

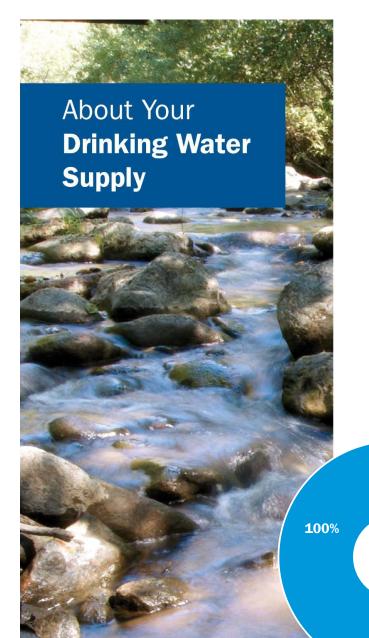
EVERY STEP OF THE WAY.

We monitor and test your water at multiple points through **FILED** our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our 07/01/22 pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, 9 PM nationwide.

A2207001

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

WHERE YOUR WATER COMES FROM

Garrapata is served entirely by groundwater under the direct influence of the Garrapata Creek that is a surface water source. Drinking water treatment technologies used include direct filtration and disinfection to ensure the water meets the Surface Water Treatment Rule. The water supply is distributed for residential and commercial use.

An assessment of the drinking water sources for California American Water's Garrapata water system is available at the Monterey County Environmental Health Office. This assessment is an evaluation of drinking water sources to determine the "possible contaminating activities" (PCAs) to which a source is most vulnerable. PCAs are current or historic human activities that are actual or potential origins of contamination for a drinking water source. PCAs for Garrapata include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies.

QUICK FACTS ABOUT THE GARRAPATA SYSTEM

Water source:

Groundwater wells influenced by the Garrapata Creek

Water treatment:

Water from wells is filtered and disinfected with chlorine before distributed to customers for consumption.

SOURCE OF SUPPLY FOR THE SYSTEM

 Groundwater Under Direct Influence of Surface Water

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

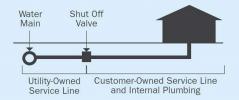
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Dr. Jack Wang at 831-646-3269.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

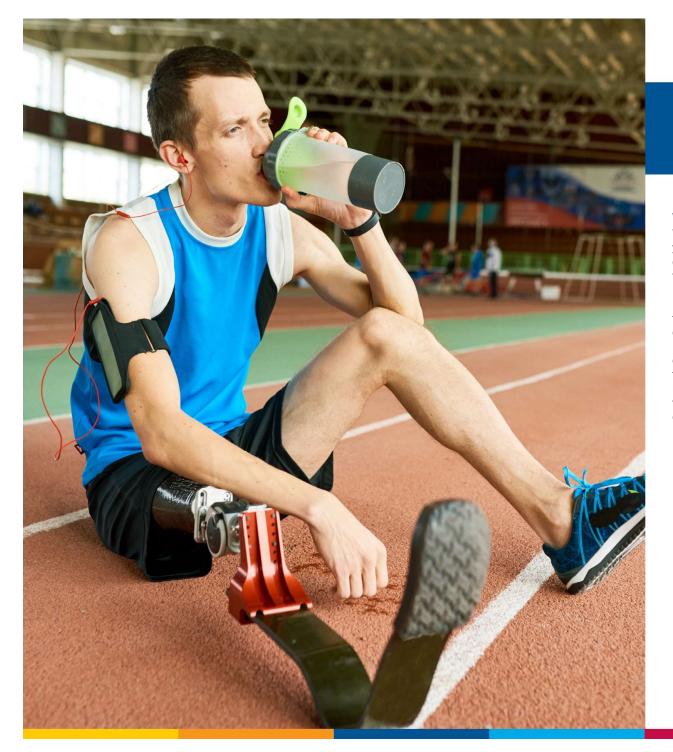
6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

Important Information About **Drinking Water**

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

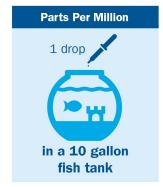
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

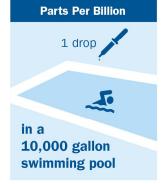
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

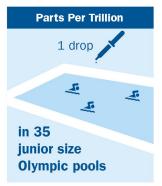
RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

11

Water Quality **Results**

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 5 tap water samples collected at customers' taps every 3 years											
Substance (with units)	Treat Sampled Transfer Transfe		Typical Source									
Lead (ppb)	2019	Yes	0.2	15	1	5	0	Corrosion of household plumbing systems.				
Copper (ppm)	2019	Yes	0.3	1.3	0.8665	6	0	Corrosion of household plumbing systems.				

	DISINFECTION BYPRODUCTS - Collected in the Distribution System												
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected ¹	Typical Source						
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	66.4	NA	By-product of drinking water disinfection.						
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	14.1	NA	By-product of drinking water disinfection.						

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

1 - NA: One location only

	DISINFECTANTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Minimum Chlorine Residual	Compliance Result	Range Detected	Typical Source				
Distribution System Chlorine Residual (ppm) ¹	20XX	Yes	4	4	0.69	1.26	0.69 to 2.07	Water additive used to control microbes.				

1 - Data represents the monthly average of chlorine residuals measured throughout our distribution system.

	TURBIDITY - Continuous Monitoring at the Treatment Plant											
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Single Measurement and Lowest Monthly % of Samples ≤0.3 NTU	Typical Source						
	2020	Yes	0	TT: Single result >0.5 NTU	0.24	Soil runoff.						
Turbidity (NTU)	2020	Yes	NA	TT: At least 95% of samples ≤0.1 NTU	99.88%	Soil runoff.						

	PRIMARY REGULATED SUBSTANCES - Collected at the Treatment Plant or Sources												
Substance (with units) Year Sampled Compliance Achieved MCL MCL Average Range Compliance Result Detected Typical Source													
Radium 226 (pCi/L)	2017	Yes	0.05	5	1.10	NA	Erosion of natural deposits						
Radium 228 (pCi/L)	2017	Yes	0.019	5	2.18	NA	Erosion of natural deposits						
Fluoride (naturally occurring) (ppm) ¹	2016	Yes	1	2.0	0.6	NA	Erosion of natural deposits						
Nitrate as N (ppm)	2020	Yes	10	10	1.16	NA	Erosion of natural deposits						

- 1 Fluoride: California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.
- 2 NA: One detection only

	SECONDARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source											
Substance (with units)	Year Sampled	Compliance Achieved ¹	SMCL	Average Compliance Result	Range Detected ²	Typical Source						
Chloride (ppm)	2016	Yes	500	63	NA	Leaching from natural deposits						
Specific Conductance (mmhos/cm)	2020	Yes	1600	481	NA	Leaching from natural deposits						
Sulfate (ppm)	2016	Yes	500	13	NA	Leaching from natural deposits						
Total Dissolved Solids (ppm)	2020	Yes	1000	210	NA	Leaching from natural deposits						

^{1 –} Yes: There are no PHGs, MCLGs, or mandatory standard health effects language for Secondary Substances because secondary MCLs are set based on aesthetic concerns.

^{2 -} NA: One detection only

OTHER SUBSTANCE	OTHER SUBSTANCES OF INTEREST - Collected at the Treatment Plant Effluent and/or at the Source											
Substance (with units)	Year Sampled	Average	Range Detected									
Substance (wantanes)	rear Samplea	Aveluge	Low	High								
Alkalinity as CaCO ₃ (ppm)	2020	125	120	129								
Calcium (ppm)	2020	29	29	29								
Magnesium (ppm)	2016	16	15	16								
pH (pH Units)	2020	7.16	7.16	7.16								
Sodium (ppm)	2016	43	43	43								
Total Hardness as CaCO ₃ (ppm)	2016	128	128	128								
Total Hardness as Grains per Gallon (gpg)	2016	8	8	8								
Strontium (ppb)	2016	100	100	100								

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

County of Monterey Health Department

https://www.co.monterey.ca.us/government/departments-a-h/health

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wga.org

National Library of Medicine/National Institute of Health:

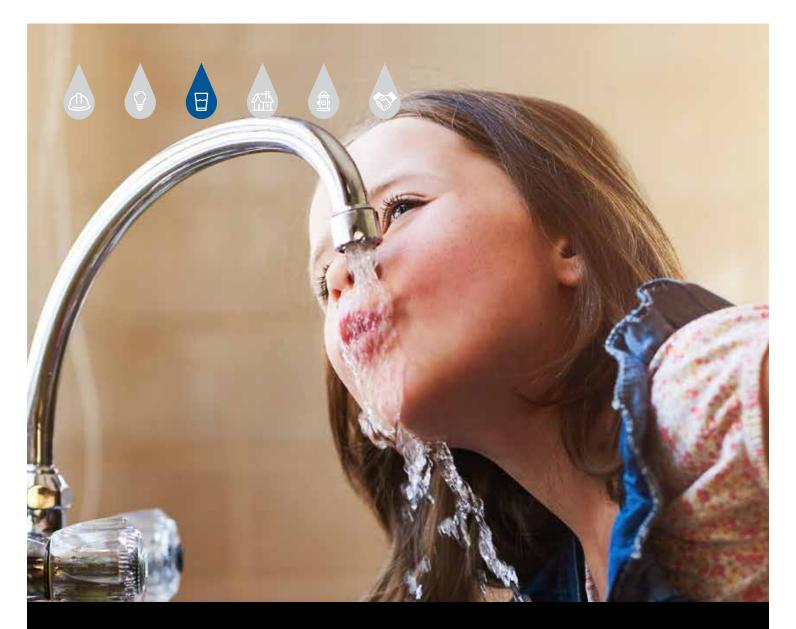
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

HIDDEN HILLS | PWS ID: 2710022

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

Sincerely,

RICHARD SVINDLAND

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

Hidden Hills is served entirely by groundwater sources from the Santa Margarita Aquifer. Drinking water treatment technologies used in your water system include corrosion control and disinfection to ensure the bacteriological quality. The water supply is distributed for residential and commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water – Hidden Hills water system was completed in February 2003. No man-made contaminants have been detected in the groundwater supplies. The sources are considered vulnerable to the following activities: drinking water treatment plants, high-density housing, and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS.

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure

by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

LEAD IN SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water systems to test lead levels by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water does not serve any school site in the Hidden Hills water system.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- **MCLG** is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results: Hidden Hills

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year Sampled*	MCL	PHG (MCLG)	Average Amount Detected	Range of	Detections	Violation	Typical Source
					Low	High	violation	
Radium 228 (pCi/L)	2016	5	0.019	2.81	2.81	2.81	No	Erosion of natural deposits
Uranium (pCi/L)	2014	20	0.43	2.8	2.8	2.8	No	Erosion of natural deposits
Arsenic (ppb)	2016	10	0.004	4	4	4	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ¹	2016	2.0	1	0.46	0.46	0.46	No	Erosion of natural deposits
Nitrate as N (ppm)	2018	10	10	1.28	1.28	1.28	No	Erosion of natural deposits
Selenium (ppb)	2016	50	30	10	10	10	No	Erosion of natural deposits
Cadmium (ppb)	2016	5	0.04	1	1	1	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL/MRDL	MRDL MCLG	Average Amount	Range of Detections		Violation	Typical Source
	Sampled	MICE/MIRDL		Detected	Low	High	Violation	Typical Source
Total Trihalomethanes (TTHM) (ppb) ²	2018	80	NA ²	35.6	29.2	42	No	By-product of drinking water chlorination
Total Haloacetic Acids (HAA 5) (ppb) ²	2018	60	NA ²	6.7	5.4	8.0	No	By-product of drinking water chlorination
Chlorine (ppm)	2018	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.28	0.35	1.81	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

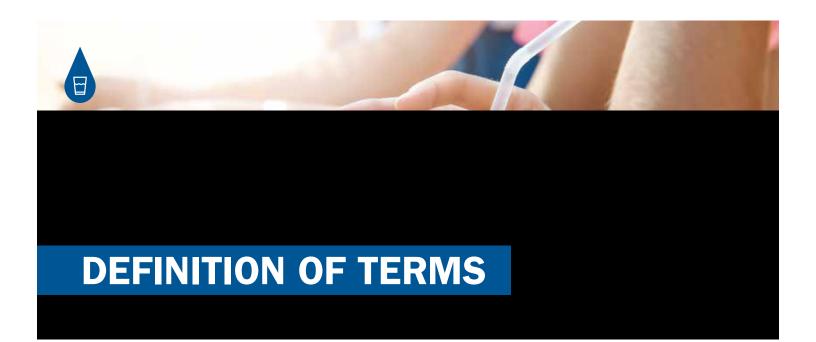
Substance (units)	Year Sampled*	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2017	1.3	0.3	11	0.217	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2017	15	0.2	11	1	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	SMCL	Average Amount Detected	Range of	Detections	Violation	Typical Source	
Substance (units)	Sampled*	SWICE	Average Amount Detected	Low	High	Violation	Typical Source	
Chloride (ppm)	2016	500	164	164	164	No	Leaching from natural deposits	
Specific Conductance (μmhos/cm)	2018	1600	1182	1182	1182	No	Substances that form ions when in water	
Sulfate (ppm)	2016	500	98	98	98	No	Leaching from natural deposits	
Total Dissolved Solids (ppm)	2018	1000	702	702	702	No	Leaching from natural deposits	
Zinc (ppm)	2018	5	0.160	0.146	0.172	No	Treatment dditive for corrosion control	

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2018. Values may vary from day to day. There are no health-based limits for these substances in drinking water.


Substance (units)	Year Sampled*	Average Amount Detected	Range of Detections	
			Low	High
Alkalinity as CaCO ₃ (ppm)	2018	261	254	271
Calcium (ppm)	2018	83	83	83
Magnesium (ppm)	2016	25	25	25
pH (pH Units)	2018	7.70	7.55	7.79
Radon (pCi/L)	2010	260	260	260
Sodium (ppm)	2016	105	105	105
Total Hardness as CaCO₃ (ppm)	2016	318	318	318
Total Hardness as Grains per Gallon (gpg)	2016	19	19	19
Strontium (ppb)	2016	400	400	400
Vanadium (ppb)	2016	4	4	4

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring- In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Fluoride- California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

²TTHM/HAA5- Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

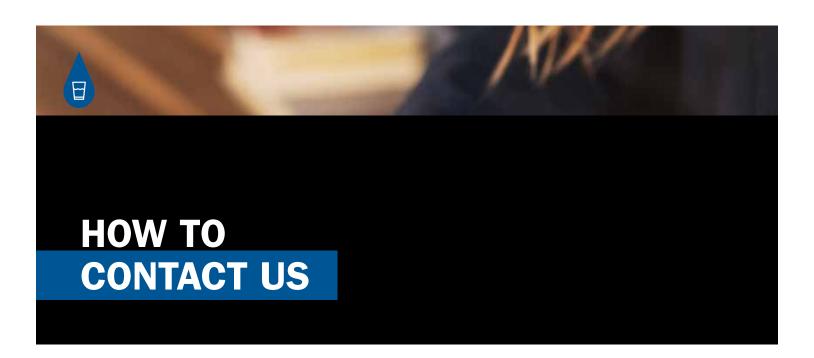
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

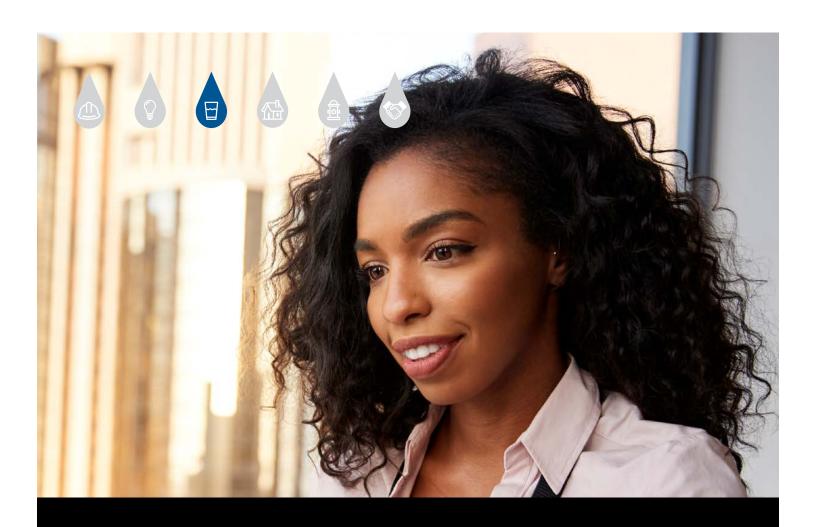
National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

HIDDEN HILLS | PWS ID: 2710022

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

June Chule

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

Hidden Hills is served entirely by groundwater sources from the Santa Margarita Aquifer. Drinking water treatment technologies used in your water system include corrosion control and disinfection for bacteriological quality. The water supply is distributed for residential and commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water – Hidden Hills water system was completed in February 2003. The sources that are considered to be vulnerable include drinking water treatment plants and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

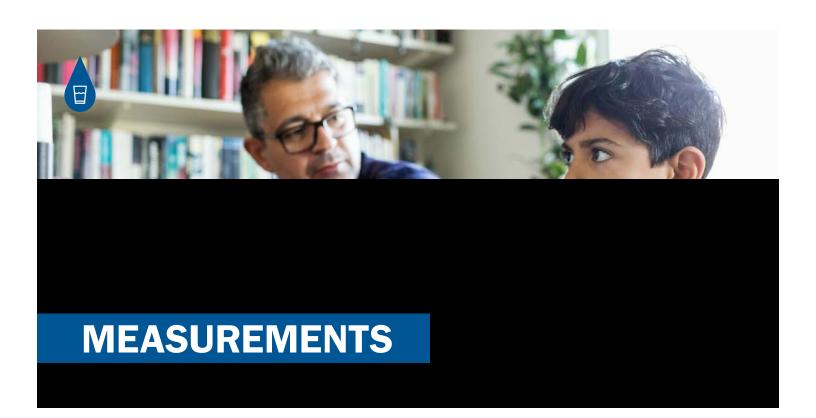
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

PFOA/PFOS Monitoring

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source water of Hidden Hills water system in 2019. PFOA and PFOS were not detected in the water above the detection limits for the testing.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- 1 Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5 Average Amount Detected** represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

Water Quality Results: Hidden Hills

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	MCL	PHG	Average Amount	Range of	Detections	Violation	Typical Source
Substance (units)	Sampled*	MCL	(MCLG)	Detected	Low	High	Violation	
Uranium (pCi/L)	2014	20	0.43	2.8	2.8	2.8	No	Erosion of natural deposits
Arsenic (ppb)	2019	10	0.004	5	5	5	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ¹	2019	2.0	1	0.43	0.43	0.43	No	Erosion of natural deposits
Nitrate as N (ppm)	2019	10	10	1.40	1.37	1.42	No	Erosion of natural deposits
Selenium (ppb)	2019	50	30	11	11	11	No	Erosion of natural deposits
Cadmium (ppb)	2019	5	0.04	1	1	1	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL/MRDL	MCLG	Average Amount Detected	Range of Detections		Violation	Typical Source
	Sampled				Low	High	Violation	Typical Source
Total Trihalomethanes (TTHM) (ppb) ²	2019	80	NA ²	32.8	28.7	36.9	No	By-product of drinking water chlorination
Total Haloacetic Acids (HAA 5) (ppb) ²	2019	60	NA ²	6.7	6.2	7.2	No	By-product of drinking water chlorination
Chlorine (ppm)	2019	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.59	1.02	2.15	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled*	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2017	1.3	0.3	11	0.217	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2017	15	0.2	11	1	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

There are no PHGs, MCLGs, or mandatory standard health effects language for these substances. The secondary MCLs are set on the basis of aesthetic concer

Substance (units)	Year	SMCL	Average Amount Detected	Range of	Detections	Typical Source
Substance (units)	Sampled*	SWICE	Average Amount Detected	Low	High	Typicai Source
Chloride (ppm)	2019	500	166	166	166	Leaching from natural deposits
Odor (Units)	2019	3	3	3	3	Naturally-occurring organic materials
Specific Conductance (µmhos/cm)	2019	1600	1083	1000	1165	Substances that form ions when in water
Sulfate (ppm)	2019	500	96	96	96	Leaching from natural deposits
Total Dissolved Solids (ppm)	2019	1000	645	644	646	Leaching from natural deposits
Zinc (ppm)	2019	5	0.170	0.162	0.179	Treatment Additive for corrosion control

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2019. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Substance (units)	Year Sampled*	Average Amount Detected	Range of Detections			
Substance (units)	Tear Sampleu	Average Amount Detected	Low	High		
Alkalinity as CaCO ₃ (ppm)	2019	259	190	279		
Calcium (ppm)	2019	81	79	83		
Magnesium (ppm)	2019	25	25	25		
pH (pH Units)	2019	7.77	7.45	7.99		
Sodium (ppm)	2019	106	106	106		
Total Hardness as CaCO ₃ (ppm)	2019	310	310	310		
Total Hardness as Grains per Gallon (gpg)	2019	18	18	18		
Strontium (ppb)	2019	400	400	400		
Vanadium (ppb)	2019	3	3	3		

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Fluoride - California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

² TTHM/HAA5 - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

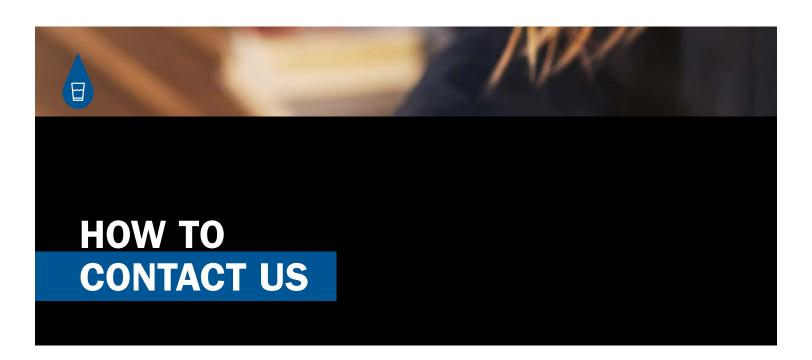
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

Hidden HillsPWS ID: CA2710022

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich SvindlandPresident
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

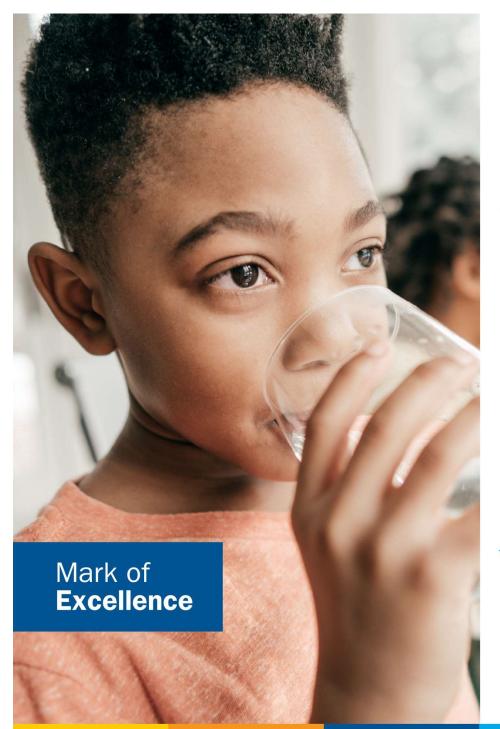
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

June Chulu

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

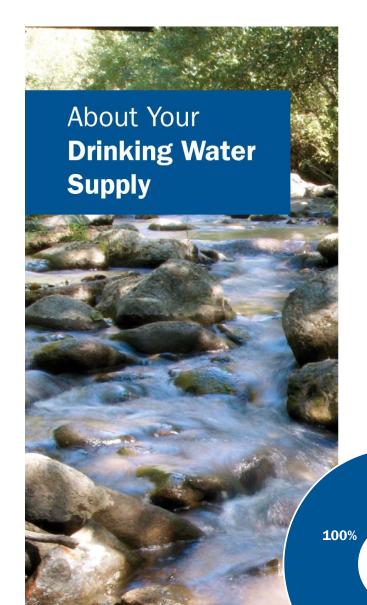
A message from our President	2
What is a Consumer Confidence Report	3
Mark of Excellence	4
About Your Drinking Water Supply	5
What are the Sources of Contaminants?	6
Protecting Your Drinking Water Supply	7
About Lead	8
mportant Information About Your Water	9
Water Quality Results	10
Definitions of Terms Used in Document	11
Water Quality Results: Detailed Charts	12-14
About Us	15
Contact Us	16

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

WHERE YOUR WATER COMES FROM

Hidden Hills is served entirely by groundwater sources from the Santa Margarita Aquifer in the Seaside subbasin. Drinking water treatment technologies used in your water system include corrosion control and disinfection for bacteriological quality. The water supply is distributed for residential and commercial use.

An assessment of the drinking water sources for the California American Water – Hidden Hills water system was completed in February 2003. The sources that are considered vulnerable to drinking water treatment plants and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA.

QUICK FACTS ABOUT THE HIDDEN HILLS SYSTEM

Water source:

Groundwater well

Water treatment:

The water is disinfected with chlorine and treated with corrosion inhibitor before distributed to customers for consumption.

Groundwater

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.									
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.									
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.									
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.									
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.									

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

WHAT CAN YOU DO?

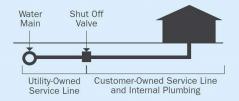
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Dr. Jack Wang at 831-646-3269.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

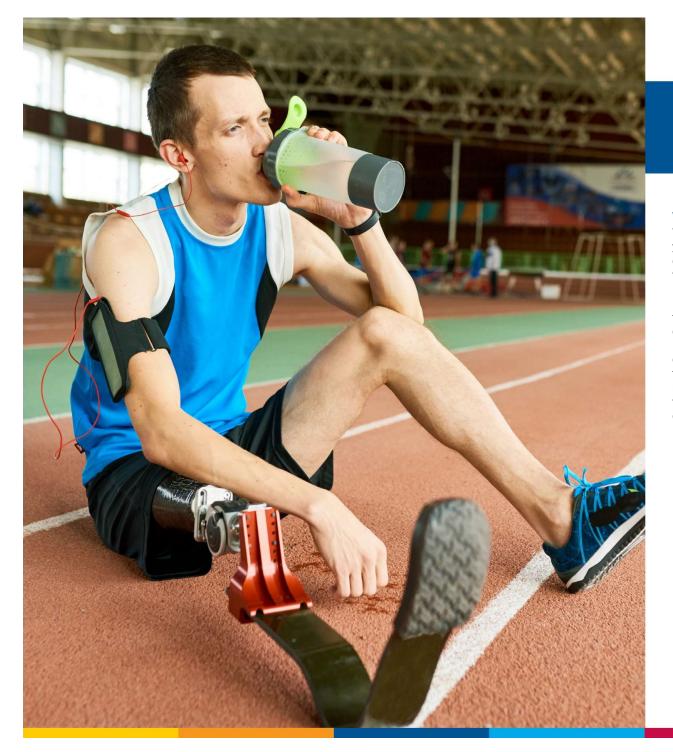
6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

Important Information About **Drinking Water**

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich
Principal Scientist,
Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

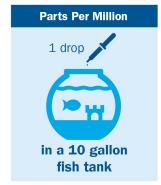
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

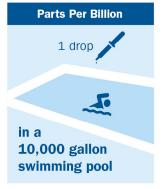
RAA: Running Annual Average

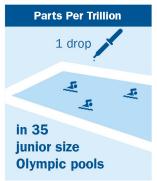
Secondary Maximum Contaminant Level (**SMCL**): Secondary MCLs are set to protect the odor, taste, and appearance of

drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

Water Quality Results

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 10 tap water samples collected at customers' taps every three years										
Substance (with units) Year Sampled Compliance Achieved Achieved Action Level (AL) 90 th Percentile Sampled No. of Homes Above Action Level Action Level Action Level											
Lead (ppb)	2020	Yes	0.2	15	0	10	0	Corrosion of household plumbing systems.			
Copper (ppm)	2020	Yes	0.3	1.3	0.14	10	0	Corrosion of household plumbing systems.			

	DISINFECTION BYPRODUCTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected	Typical Source					
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	38.8	35.3 to 38.8	By-product of drinking water disinfection.					
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	6.8	6.5 to 6.8	By-product of drinking water disinfection.					

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

	DISINFECTANTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Minimum Chlorine Residual	Compliance Result	Range Detected	Typical Source				
Distribution System Chlorine Residual (ppm) ¹	2020	Yes	4	4	0.88	1.34	0.88 to 2.08	Water additive used to control microbes.				

1 - Data represents the average of chlorine residuals measured throughout our distribution system.

	PRIMARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source										
Substance (with units)	Year Sampled	Compliance Achieved	MCL	PHG or MCLG	Average Compliance Result	Range Detected ²	Typical Source				
Uranium (pCi/L)	2020	Yes	20	0.43	2.8	NA	Erosion of natural deposits				
Arsenic (ppb)	2019	Yes	10	0.004	5	NA	Erosion of natural deposits				
Fluoride (naturally occurring) (ppm) ¹	2019	Yes	2.0	1	0.43	NA	Erosion of natural deposits				
Nitrate as N (ppm)	2020	Yes	10	10	1.44	NA	Erosion of natural deposits				
Selenium (ppb)	2019	Yes	50	30	11	NA	Erosion of natural deposits				
Cadmium (ppb)	2019	Yes	5	0.04	1	NA	Erosion of natural deposits				

^{1 –} Fluoride: California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve. 2 – NA: One detection only

SECONDARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source										
Substance (with units)	Year Sampled	Compliance Achieved ¹	SMCL	Average Compliance Result	Range Detected ²	Typical Source				
Chloride (ppm)	2019	Yes	500	166	NA	Leaching from natural deposits				
Odor (Units)	2019	Yes	3	3	NA	Naturally-occurring organic materials				
Specific Conductance (mmhos/cm)	2020	Yes	1600	1224	1135 to 1268	Substances that form ions when in water				
Sulfate (ppm)	2019	Yes	500	96	NA	Leaching from natural deposits				
Total Dissolved Solids (ppm)	2019	Yes	1000	645	644 to 646	Leaching from natural deposits				
Zinc (ppm)	2020	Yes	5	0.176	0.160 to 0.188	Treatment additive for corrosion control				

^{1 –} Yes: There are no PHGs, MCLGs, or mandatory standard health effects language for Secondary Substances because secondary MCLs are set based on aesthetic concerns 2 – NA: Only one detection

OTHER SUBSTANCES OF INTEREST - Collected at the Treatment Plant Effluent and/or at the Source				
Substance (with units)	Year Sampled	Average	Range Detected	
			Low	High
Alkalinity as CaCO ₃ (ppm)	2020	273	262	280
Calcium (ppm)	2020	82	77	85
Magnesium (ppm)	2019	25	25	25
pH (pH Units)	2020	7.85	7.61	8.08
Sodium (ppm)	2019	106	106	106
Total Hardness as CaCO ₃ (ppm)	2019	310	310	310
Total Hardness as Grains per Gallon (gpg)	2019	18	18	18
Strontium (ppb)	2019	400	400	400
Vanadium (ppb)	2019	3	3	3

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- PEOPLE SERVED
 Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

County of Monterey Health Department:

https://www.co.monterey.ca.us/government/departments-a-h/health

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wqa.org

National Library of Medicine/National Institute of Health:

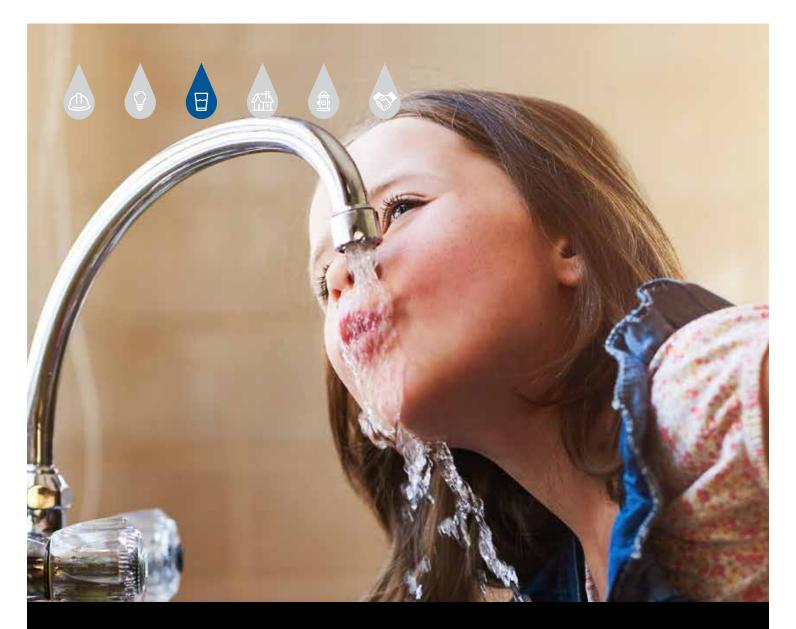
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

MONTEREY | PWS ID: 2710004

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

Sincerely,

RICHARD SVINDLAND

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

Monterey is served by groundwater sources from the Santa Margarita, Paso Robles, and Carmel Alluvial aquifers as well as surface water from the Sand City Desalination Plant.

Drinking water treatment technologies used are reverse osmosis, iron and manganese removal, corrosion control, and disinfection to ensure the bacteriological quality.

The water supply is distributed for residential and commercial use in the communities of Carmel-by-the-Sea, Carmel Highlands, Carmel Valley, Del Rey Oaks, Monterey, Pacific Grove, Pebble Beach, Sand City, and Seaside.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water - Monterey water system was completed in February 2003. This assessment is an evaluation of drinking water sources to determine the "possible contaminating activities" (PCAs) to which a source is most vulnerable. PCAs are current or historic human activities that are actual or potential origins of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies.

The Monterey system's water sources are considered vulnerable to the following: airport maintenance and fueling areas, automobile gas stations, dry cleaners, high-density housing, military installations, NPDES/WDR permitted discharges, parks, storm drain discharge permits, low- and high-density septic systems, and water supply wells.

Tetrachloroethylene and methyl tert-butyl ether, associated with industrial activities, have historically been detected in two groundwater sources. These sources are now tested with increased frequency to monitor these contaminants.

A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The Monterey water system completed a "Watershed Sanitary Survey" covering the period of 2001–2006. This survey examines the potential impacts of the Carmel River watershed.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS.

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

CRYPTOSPORIDIUM

Cryptosporidium is a microbial pathogen found in surface waters throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Monitoring does not indicate the presence of these organisms in either the source or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing life-threatening illness. We encourage immunocompromised individuals to consult their health care provider regarding appropriate precautions to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. You can obtain more information on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

RADON

Radon is a radioactive gas and known human carcinogen, found throughout the U.S., that you cannot see, taste, or smell. It can move up through the ground and into a home through cracks and holes in the foundation and can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. When entering the home through tap water, radon is usually found in minor amounts in indoor air, compared to when it enters the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may

cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside your home. Testing is inexpensive and easy. You should pursue radon removal if the level of radon in your air is four picocuries per liter (pCi/L) of air or higher. There are simple ways to fix a radon problem that are not too costly. For additional information, call your State Radon Program at (800) 745-7236, or the U.S. EPA Safe Drinking Water Act Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

UNREGULATED CONTAMINANT MONITORING RULE (UCMR)

The USEPA created the Unregulated Contaminants Monitoring Rule (UCMR) to assist them in determining the occurrence of unregulated contaminants in drinking water and whether new regulations are warranted. The first Unregulated Contaminants Monitoring Rule (UCMR1) testing was completed in 2003 for a list of contaminants specified by the USEPA. Unregulated contaminants are those for which the USEPA has not established drinking water standards. The second testing cycle (UCMR2) was conducted between November 2008 and August 2009. The third testing cycle (UCMR3) in the Monterey system was conducted between January 2013 and December 2015. The fourth testing cycle (UCMR4) in the system started in 2018 and will be completed in 2020. The results from the UCMR monitoring are reported directly to the USEPA and mostly not detected. The results of this monitoring are incorporated in the data tables in this report as appropriate. For more information, contact our Customer Service Center at (888) 237-1333.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.


When your water has been sitting for several hours, you can minimize the potential for lead exposure

by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

LEAD IN SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water systems to test lead levels by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water serves twenty seven (27) public school sites in the Monterey water system and has completed all required testing at the 27 sites. In addition, by order of the Division of Drinking Water, California American Water has tested and will test non-public K-12 schools upon request by the school's administration. In either case, the school district is responsible for informing parents of lead testing results for their schools. Please contact your child's school or school district to get detailed results on lead testing at your child's school.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

COMPLIANCE ORDER

During the system sanitary survey conducted in June 2018, the Division of Drinking Water staff identified deficiencies in the water system's water storage tank operations and maintenance program. On August 15, 2018, the State Water Board issued the system a compliance order (No. 02_05_18R_005). The order requires the water system to correct deficiencies identified during the sanitary survey, develop a Water System Operations and Maintenance Plan pursuant to the California Code of Regulations, Title 22, Section 64600, that includes a description and schedule for routine inspection of all distribution reservoirs at a frequency of every six months and a schedule and procedures for cleaning, maintaining, and repairing reservoirs, and operate the system in accordance with the State Water Board approved plan. The water system implemented corrective actions and developed the required plan in October 2018 and is currently operating in accordance of the plan.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- 4 MCLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- 7 A No under Violation indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results: Monterey

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	MCL	PHG (MCLG)	Average Amount	Range of I	Detections	Violation	Typical Source
Substance (units)	Sampled*	MCL	PHG (MCLG)	Detected	Low	High	Violation	турісаі Source
Gross Alpha Particle Activity (pCi/L)	2015-2018	15	(0)	0.91	ND	8.56	No	Erosion of natural deposits
Gross Beta Particle Activity (pCi/L)	2012	50	(0)	1.35	ND	4.05	No	Erosion of natural deposits
Chromium VI (Hexavalent Chromium) (ppb)	2016 - 2018	NA	0.02	0.16	ND	2.23	No	Erosion of natural deposits
Chromium (ppb)	2016 - 2018	50	(100)	0.6	ND	11	No	Erosion of natural deposits
Radium 226 (pCi/L)	2015-2018	5	0.05	0.55	ND	2.68	No	Erosion of natural deposits
Radium 228 (pCi/L)	2015-2018	5	0.019	1.04	ND	2.96	No	Erosion of natural deposits
Uranium (pCi/L)	2014 - 2018	20	0.43	0.15	ND	1.5	No	Erosion of natural deposits
Arsenic (ppb) ¹	2016 - 2018	10	0.004	1.41	ND	7	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ²	2016 - 2018	2.0	1	0.22	ND	0.43	No	Erosion of natural deposits
Nitrate as N (ppm) ³	2018	10	10	1.65	ND	6.43	No	Erosion of natural deposits
Selenium (ppb)	2016 - 2018	50	30	2	ND	23	No	Erosion of natural deposits
Cadmium (ppb)	2016 - 2018	5	0.04	0.04	ND	1	No	Erosion of natural deposits

Turbidity – A Measure of the Clarity of the Water (at the Sand City Desalination Facility)

Plant	Year Sampled	тт	PHG	Highest Single Measurement	Highest Single Measurement Violation		
		4 81-11		0.024	No		
Turbidity (NTU) ⁴	2018	1 NTU	NA	Lowest % of measurements <0.1	Violation	Soil runoff	
		At least 95% of samples < 0.1 NTU		100%	No		

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL (MRDL)	MCLG Average Amount	Range of	Range of Detections		Typical Source	
Substance (units)	Sampled	WCE (WRDE)	MCLG	Detected	Low	High	Violation	турісат зоштсе
Total Trihalomethanes (TTHM)	2018	80	5	43.6 (system-wide)	ND	83.4	No	By-product of drinking water chlorination
(ppb) ⁵	2016	80	NA ⁵	58.7 (highest location)	140	00.4	140	by-product of drinking water chlorination
Total Haloacetic Acids (HAA 5)	ids (HAA 5) 2018	60	NA ⁵	16.1 (system-wide)	ND	24.7	No	By-product of drinking water chlorination
(ppb) ⁵				21.6 (highest location)	ND	24.7	NO	
Chlorine (ppm)	2018	(4.0) (as Cl ₂)	(4.0) (as Cl ₂)	1.17	0.11	3.1	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2018	1.3	0.3	31	0.719	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2018	15	0.2	31	2	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Bacterial Results (Measured on the Water in the Distribution System)

Substance (units)	Year Sampled	MCL	MCLG	Highest percentage detected	Violation	Typical Source
Total Coliform Bacteria	2018	5% of monthly samples are positive	(0)	1.1	No	Naturally present in the environment

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or Source)

Cubatanas (unita)	Year	SMCL	Average Amount Detected	Range of I	Detections	Violation	Typical Source	
Substance (units)	Sampled*	SINICL	Average Amount Detected	Low	High	Violation	турісаі Зоцісе	
Chloride (ppm)	2016	500	51	12	168	No	Leaching from natural deposits; Seawater influence	
Iron (ppb)	2016 - 2018	300	5.7	ND	200	No	Leaching from natural deposits	
Manganese (ppb)	2016 - 2018	50	3	ND	32	No	Leaching from natural deposits	
Odor (Units)	2016 - 2018	3	0.4	ND	2	No	Naturally-occurring organic materials	
Specific Conductance (µmhos/cm)	2016 - 2018	1600	529	249	1098	No	Substances that form ions when in water; Seawater influence	
Sulfate (ppm)	2016 - 2018	500	62	1	106	No	Leaching from natural deposits	
Total Dissolved Solids (ppm)	2016 - 2018	1000	285	116	572	No	Leaching from natural deposits	
Turbidity (units)	2016 - 2018	5	0.1	ND	0.8	No	Soil runoff	
Zinc (ppm)	2016 - 2018	5	0.01	ND	0.1	No	Leaching from natural deposits; Treatment Process	

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2018. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

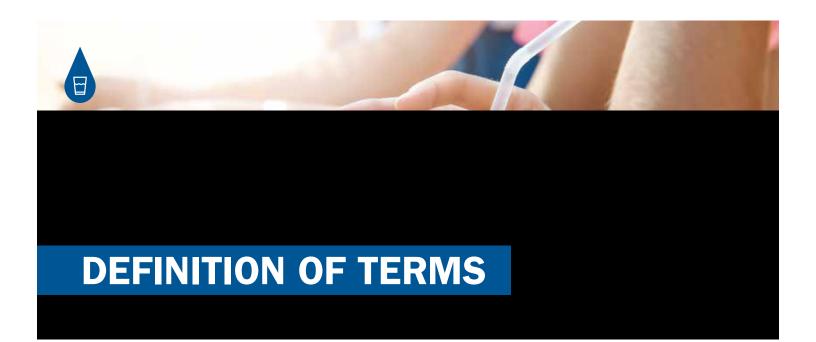
Substance (units)	Year Sampled*	Average Amount Detected	Range of	Detections
Substance (units)	Tear Sampleu	Average Amount Detected	Low	High
Alkalinity as CaCO ₃ (ppm)	2016 - 2018	134	2	221
Boron (ppm)	2016 - 2018	0.4	ND	1.1
Calcium (ppm)	2016 - 2018	43	30	75
Magnesium (ppm)	2016 - 2018	14	ND	21
pH (pH Units)	2016 - 2018	7.35	6.27	8.31
Radon (pCi/L)	2010	322	163	638
Sodium (ppm)	2016 - 2018	42	16	108
Strontium (ppb)	2016 - 2018	247	ND	500
Total Hardness as CaCO ₃ (ppm)	2016 - 2018	164	115	274
Total Hardness as Grains per Gallon (gpg)	2016 - 2018	10	7	16
Vanadium (ppb)	2016 - 2018	0.2	ND	5

Unregulated Substances (Measured on the Water Leaving the Treatment Facility or within the Distribution System)

Outration of (contra)	Very Consulted	Account Defended	Range of	Detections	
Substance (units)	Year Sampled*	Average Amount Detected	Low	High	
Bromochloromethane (ppb)	2013 - 2015	0.14	0.08	0.19	
Chlorate (ppb)	2013 - 2015	189	26	490	
Molybdenum (ppb)	2013 - 2015	6	2.2	14.4	
Strontium (ppb)	2013 - 2015	284	90.8	397.7	
Vanadium (ppb)	2013 - 2015	1.41	0.3	5.6	
2-Methoxyethanol (ppb)	2018	0	ND	2.2	
Bromochloroacetic Acid (ppb)	2018	6.3	2.4	8.1	
Bromodichloroacetic acid (ppb)	2018	5.18	0.91	7.1	
Chlorodibromoacetic acid (ppb)	2018	3.2	1.6	4.0	
Dibromoacetic Acid (ppb)	2018	3.7	3.0	4.6	
Dichloroacetic Acid (ppb)	2018	6.8	1.3	9.5	
Monobromoacetic Acid (ppb)	2018	0.71	0.60	1.00	
Total Haloacetic Acids - Br (ppb)	2018	19	11	24	
Total Haloacetic Acids - HAA 9 (ppb)	2018	31	12	40	
Trichloroacetic Acid (ppb)	2018	4.8	ND	7.3	

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring- In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.


¹ Arsenic - While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

² Fluoride- Clifornia American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

³ Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

⁴ Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

⁵TTHM/HAA5- Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

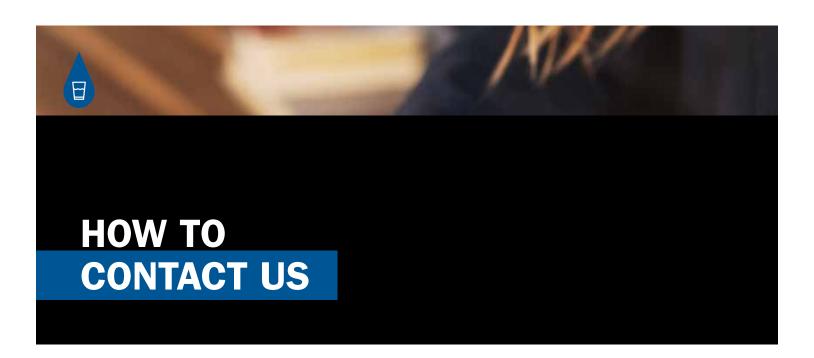
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

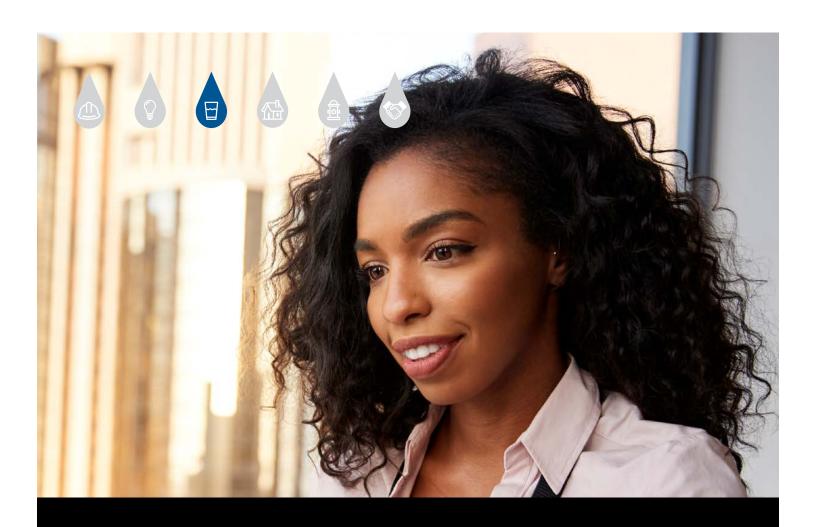
National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

MONTEREY | PWS ID: 2710004

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

June Chule

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

ABOUT YOUR WATER

Monterey is served by groundwater sources from the Santa Margarita, Paso Robles, and Carmel Alluvial aquifers as well as surface water from the Sand City Desalination Plant.

Drinking water treatment technologies used are reverse osmosis, iron and manganese removal, corrosion control, and disinfection for bacteriological quality.

The water supply is distributed for residential and commercial use in the communities of Carmel-by-the-Sea, Carmel Highlands, Carmel Valley, Del Rey Oaks, Monterey, Pacific Grove, Pebble Beach, Sand City, and Seaside.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water - Monterey water system was completed in February 2003. This assessment is an evaluation of drinking water sources to determine the "possible contaminating activities" (PCAs) to which a source is most vulnerable. PCAs are current or historic human activities that are actual or potential origins of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies.

The Monterey system's water sources that are considered to be vulnerable include drinking water treatment plants and water supply wells.

Tetrachloroethylene and methyl tert-butyl ether, associated with industrial activities, have historically been detected in two groundwater sources. These sources are now tested with increased frequency to monitor these contaminants.

A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The Monterey water system completed a "Watershed Sanitary Survey" covering the period of 2001–2006. This survey examines the potential impacts of the Carmel River watershed.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

CRYPTOSPORIDIUM

Cryptosporidium is a microbial pathogen found in surface waters throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Monitoring does not indicate the presence of these organisms in either the source or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing life-threatening illness. We encourage immunocompromised individuals to consult their health care provider regarding appropriate precautions to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. You can obtain more information on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

RADON

Radon is a radioactive gas and known human carcinogen, found throughout the U.S., that you cannot see, taste, or smell. It can move up through the ground and into a home through cracks and holes in the foundation and can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. When entering the home through tap water, radon is usually found in minor amounts in indoor air, compared to when it enters the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may

cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside your home. Testing is inexpensive and easy. You should pursue radon removal if the level of radon in your air is four picocuries per liter (pCi/L) of air or higher. There are simple ways to fix a radon problem that are not too costly. For additional information, call your State Radon Program at (800) 745-7236, or the U.S. EPA Safe Drinking Water Act Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

UNREGULATED CONTAMINANT MONITORING RULE (UCMR)

The USEPA created the Unregulated Contaminants Monitoring Rule (UCMR) to assist them in determining the occurrence of unregulated contaminants in drinking water and whether new regulations are warranted. The first Unregulated Contaminants Monitoring Rule (UCMR1) testing was completed in 2003 for a list of contaminants specified by the USEPA. Unregulated contaminants are those for which the USEPA has not established drinking water standards. The second testing cycle (UCMR2) was conducted between November 2008 and August 2009. The third testing cycle (UCMR3) in the Monterey system was conducted between January 2013 and December 2015. The fourth testing cycle (UCMR4) in the system started in 2018 and will be completed in 2020. The results from the UCMR monitoring are reported directly to the USEPA and mostly not detected. The results of this monitoring are incorporated in the data tables in this report as appropriate. For more information, contact our Customer Service Center at (888) 237-1333.

LEAD

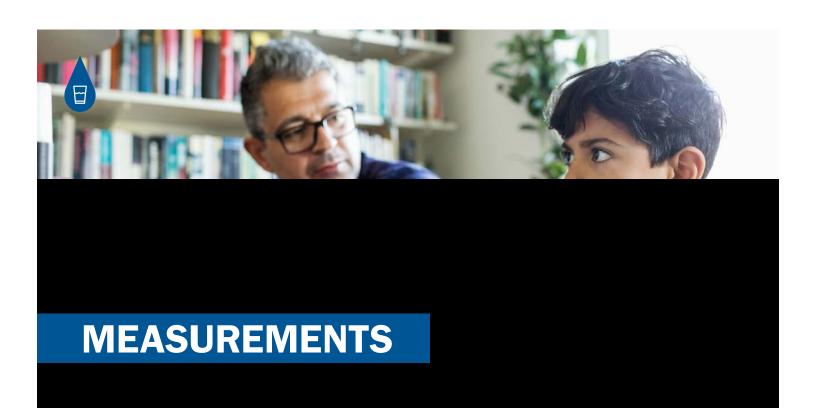
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

PFOA/PFOS Monitoring

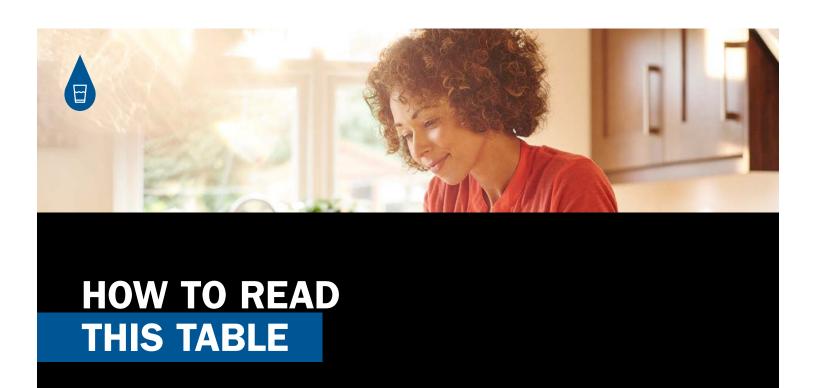
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source waters and treatment plants of Monterey water system in 2019. Out of a total 23 monitoring locations, only one well had a detection of PFOA and PFOS in the range of 5.5 to 6.2 ppt.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

Water Quality Results: Monterey

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year Sampled*	MCL	PHG (MCLG)	Average Amount Detected	Range of Detections		Violation	Typical Source
					Low	High	Violation	rypical Source
Gross Beta Particle Activity (pCi/L)	2012	50	(0)	1.35	ND	4.05	No	Erosion of natural deposits
Chromium VI (Hexavalent Chromium) (ppb)	2016 - 2018	NA	0.02	0.16	ND	2.23	No	Erosion of natural deposits
Arsenic (ppb) ¹	2019	10	0.004	1.4	ND	7	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ²	2019	2.0	1	0.25	ND	0.42	No	Erosion of natural deposits
Nitrate as N (ppm) ³	2019	10	10	1.06	ND	6.58	No	Erosion of natural deposits
Selenium (ppb)	2019	50	30	1.1	ND	7	No	Erosion of natural deposits

Turbidity – A Measure of the Clarity of the Water (at the Sand City Desalination Facility)

Plant	Year Sampled	т	PHG	Highest Single Measurement	Violation	Typical Source
	0.196		No			
Turbidity (NTU) ⁴	2019	1 NTU	NA	Lowest % of measurements <0.1	Violation	Soil runoff
		At least 95% of samples < 0.1 NTU		99.16%	No	

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL (MRDL)	MCLG	Average Amount	Range of I	Detections	Violation	Typical Source
Substance (units)	Sampled	WCL (WKDL)	WICEG	Detected	Low	High	Violation	
Total Trihalomethanes (TTHM)	2019	80	NA ⁵	37.2 (system-wide)	ND	87.8	No	By-product of drinking water chlorination
(ppb) ⁵	2019	80	NA	50.9 (highest location)	ND	07.0		by product of drinking water orionination
Total Haloacetic Acids (HAA 5)	2019	60	NA ⁵	11.5 (system-wide)	ND	ND 23.0	No	By-product of drinking water chlorination
(ppb)⁵	2013	00	IVA	16.0 (highest location)	ND	25.0	140	By-product of drinking water chlorination
Chlorine (ppm)	2019	(4.0) (as Cl ₂)	(4.0) (as Cl ₂)	1.13	ND	2.7	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2018	1.3	0.3	31	0.719	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2018	15	0.2	31	2	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Bacterial Results (Measured on the Water in the Distribution System)

Substance (units)	Year Sampled	MCL	MCLG	Highest percentage detected	Violation	Typical Source
Total Coliform Bacteria	2019	5% of monthly samples are positive	(0)	0.901	No	Naturally present in the environment

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or Source)

There are no PHGs, MCLGs, or mandatory standard health effects language for these substances. The secondary MCLs are set on the basis of aesthetic concerns.

Substance (units)	Year	SMCL	Average Amount Detected	Range of Detections		Typical Source
Substance (units)	Sampled*	SWICE	Average Amount Detected	Low	High	турісаі зойісе
Chloride (ppm)	2019	500	51	10	202	Leaching from natural deposits; Seawater influence
Iron (ppb)	2019	300	25	ND	510	Leaching from natural deposits
Manganese (ppb)	2018 - 2019	50	3	ND	29	Leaching from natural deposits
Odor (Units)	2019	3	1.4	1	3	Naturally-occurring organic materials
Specific Conductance (µmhos/cm)	2019	1600	521	229	1431	Substances that form ions when in water; Seawater influence
Sulfate (ppm)	2019	500	59	1	104	Leaching from natural deposits
Total Dissolved Solids (ppm)	2019	1000	289	112	710	Leaching from natural deposits
Turbidity (units)	2019	5	0.1	ND	0.6	Soil runoff
Zinc (ppm)	2019	5	0.02	ND	0.2	Leaching from natural deposits; Treatment Process

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2019. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Substance (units)	Van Carruladt	Average Amount Detected	Range of Detections			
Substance (units)	Year Sampled*	Average Amount Detected	Low	High		
Alkalinity as CaCO ₃ (ppm)	2019	135	78	214		
Boron (ppm)	2019	0.2	ND	1.0		
Calcium (ppm)	2019	41	25	75		
Magnesium (ppm)	2019	13	ND	25		
pH (pH Units)	2019	7.40	6.44	7.99		
Sodium (ppm)	2019	45	16	132		
Strontium (ppb)	2019	227	ND	500		
Total Hardness as CaCO ₃ (ppm)	2019	161	102	276		
Total Hardness as Grains per Gallon (gpg)	2019	9	6	16		
Vanadium (ppb)	2019	0.2	ND	5		

Unregulated Substances (Measured on the Water Leaving the Treatment Facility or within the Distribution System)

Substance (units)	Year Sampled*	Average Amount Detected	Range of Detections			
Substance (units)	Tear Sampleu	Average Amount Detected	Low	High		
Bromochloromethane (ppb)	2013 - 2015	0.14	0.08	0.19		
Chlorate (ppb)	2013 - 2015	189	26	490		
Molybdenum (ppb)	2013 - 2015	6	2.2	14.4		
Strontium (ppb)	2013 - 2015	284	90.8	397.7		
Vanadium (ppb)	2013 - 2015	1.41	0.3	5.6		
Bromochloroacetic Acid (ppb) 2019		4.1	0.7	7.4		
Bromodichloroacetic Acid (ppb) 2019		3.8	ND	6.3		
Chlorodibromoacetic Acid (ppb)	Chlorodibromoacetic Acid (ppb) 2019		ND	3.5		
Dibromoacetic Acid (ppb)	2019	1.8	0.3	3.3		
Dichloroacetic Acid (ppb)	2019	5.3	0.5	13		
Monobromoacetic Acid (ppb) 2019		0.3	ND	0.6		
Total Haloacetic Acids - Br (ppb)	2019	12	1.4	21		
Total Haloacetic Acids - HAA 9 2019 (ppb)		22	2	40		
Trichloroacetic Acid (ppb)	2019	4.6	ND	7.5		

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Arsenic - While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

² Fluoride - California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

³ Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

⁴ Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

⁵ TTHM/HAA5 - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

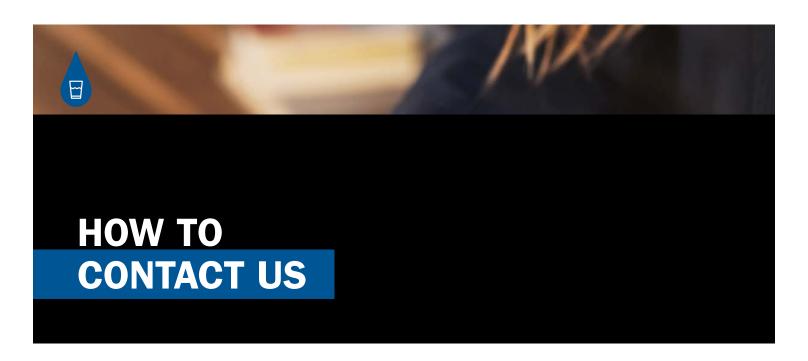
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

Monterey PWS ID: CA2710004

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich Svindland
President
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

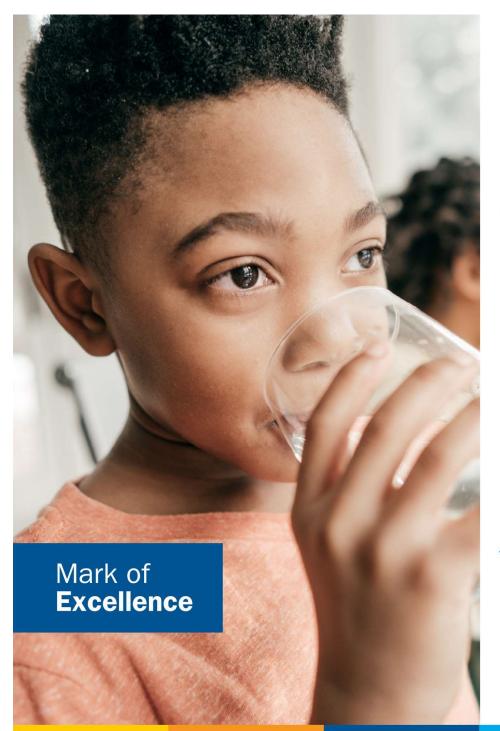
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

June Chulu

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

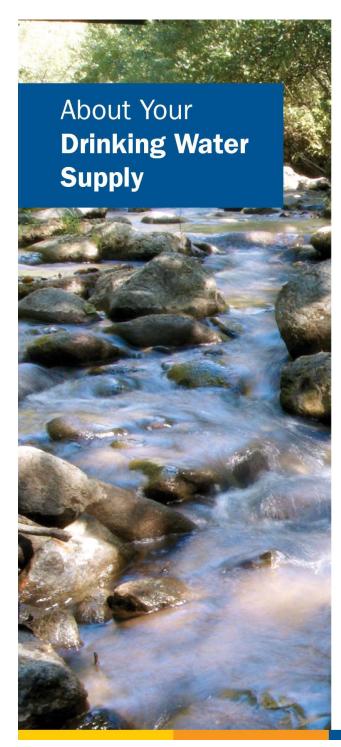
A message from our President	2
What is a Consumer Confidence Report	3
Mark of Excellence	4
About Your Drinking Water Supply	5
What are the Sources of Contaminants?	6
Protecting Your Drinking Water Supply	7
About Lead	8
Important Information About Your Water	9-10
Water Quality Results	11
Definitions of Terms Used in Document	12
Water Quality Results: Detailed Charts	13-16
About Us	17
Contact Us	18

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

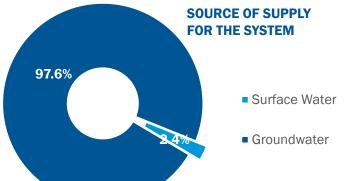
American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.



WHERE YOUR WATER COMES FROM

Monterey is served by groundwater sources from the Santa Margarita, Paso Robles, and Carmel Alluvial aquifers as well as surface water from the Sand City Desalination Plant and groundwater recharged by the Pure Water Monterey Project.

Drinking water treatment technologies used in the system include reverse osmosis, iron and manganese removal, corrosion control, and disinfection for bacteriological quality. The water supply is distributed for residential and commercial use in the communities of Carmel-by-the-Sea, Carmel Highlands, Carmel Valley, Del Rey Oaks, Monterey, Pacific Grove, Pebble Beach, Sand City, and Seaside.

An assessment of the drinking water sources for the California American Water - Monterey water system was completed in February 2003. This assessment is an evaluation of drinking water sources to determine the "possible contaminating activities" (PCAs) to which a source is most vulnerable. PCAs are current or historic human activities that are actual or potential origins of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA.

QUICK FACTS ABOUT THE MONTEREY SYSTEM

Water sources:

Groundwater wells in Carmel Valley Groundwater Wells in Seaside Sand City Desal Plant Pure Water Monterey Project

Water treatment:

Selection of treatment technologies was based on the quality of source waters. Treatment technologies used in the system include reverse osmosis, iron and manganese removal and corrosion control. The treated water is disinfected with chlorine for bacteriological quality before distributed for customers' consumption.

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

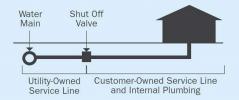
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Dr. Jack Wang at (831)646-3269.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

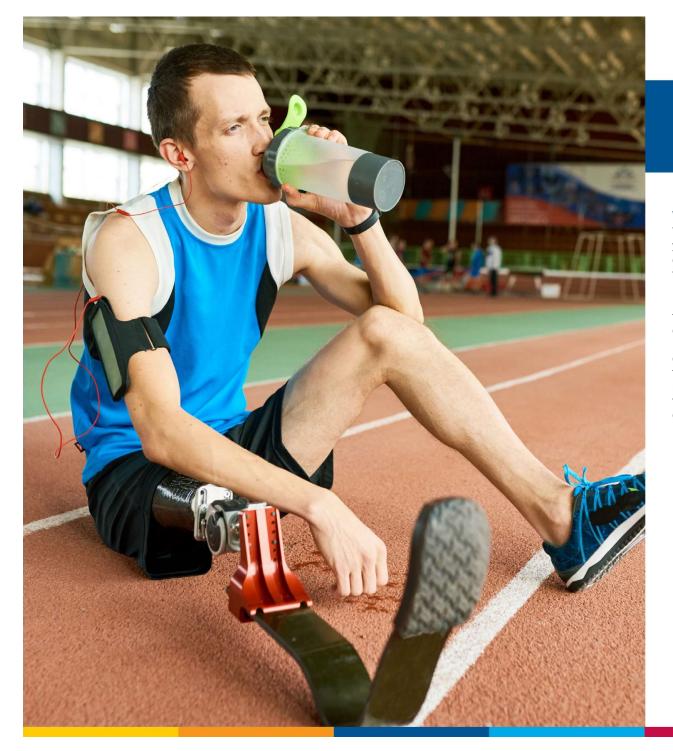
Important Information About **Drinking Water**

UNREGULATED CONTAMINANT MONITORING RULE (UCMR)

The EPA created the Unregulated Contaminants Monitoring Rule (UCMR) to assist them in determining the occurrence of unregulated contaminants in drinking water and whether new regulations are warranted. The first Unregulated Contaminants Monitoring Rule (UCMR1) testing was completed in 2003 for a list of contaminants specified by the EPA. Unregulated contaminants are those for which the EPA has not established drinking water standards. UCMR2 testing was conducted between November 2008 and August 2009, and UCMR3 assessment monitoring was conducted between January 2013 and December 2016. The fourth list of contaminants to monitor as part of the UCMR was published by the EPA in December 2016. UCMR4 testing began in 2018 and was completed in 2020. The results from the UCMR monitoring are reported directly to the EPA. The results of this monitoring are incorporated in the data tables in this report as appropriate. For more information, contact our Customer Service Center at 1-888-237-1333.

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluoroctanesulfonic acid (PFOS) and 5.1 ppt for perfluoroctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich

Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

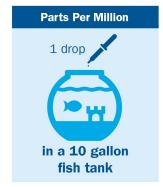
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

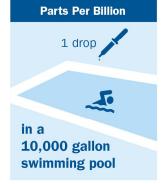
RAA: Running Annual Average

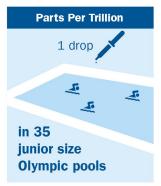
Secondary Maximum Contaminant Level (**SMCL**): Secondary MCLs are set to protect the odor, taste, and appearance of

drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

12

Water Quality **Results**

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 30 tap water samples collected at customers' taps every 3 years											
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	Action Level (AL)	90 th Percentile	No. of Homes Sampled	Homes Above Action Level	Typical Source				
Lead (ppb)	2018	Yes	0.2	15	2	31	0	Corrosion of household plumbing systems.				
Copper (ppm)	2018	Yes	0.3	1.3	0.719	31	0	Corrosion of household plumbing systems.				

	TOTAL COLIFORM RULE - At least 27 samples collected each week in the distribution system											
Substance (with units) Year Sampled Compliance Achieved MCLG			MCL	Highest Percentage	Typical Source							
Total Coliform	2020	Yes	0	Less than 5%	0.725%	Naturally present in the environment.						

NOTE: Coliforms are bacteria that are naturally present in the environment and are used as an indicator of the general bacteriological quality of the water. We are reporting the highest percentage of positive samples in any month.

DISINFECTION BYPRODUCTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected	Typical Source				
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	46.4	ND to 70.0	By-product of drinking water disinfection.				
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	22.1	ND to 26.4	By-product of drinking water disinfection.				

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

	DISINFECTANTS - Collected in the Distribution System										
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Minimum Chlorine Residual	Compliance Result	Range Detected	Typical Source			
Distribution System Chlorine Residual (ppm) ¹	2020	Yes	4	4	0.08	1.08	0.08 to 2.4	Water additive used to control microbes.			

^{1 -} Data represents the monthly average of chlorine residuals measured throughout our distribution system.

	TURBIDITY - Continuous Monitoring at the Sand City Desalination Plant										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Single Measurement and Lowest Monthly % of Samples ≤0.3 NTU	Typical Source					
	2020	Yes	0	TT: Single result >0.5 NTU	0.39	Soil runoff.					
Turbidity (NTU)	2020	Yes	NA	TT: At least 95% of samples ≤0.1 NTU	99.8%	Soil runoff.					

	PRIMARY REGULATED SUBSTANCES - Collected at the Treatment Plant or Sources										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Average Compliance Result	Range Detected	Typical Source				
Gross Alpha Particle Activity (pCi/L)	2015-2020	Yes	(0)	15	1.15	ND to 6.54	Erosion of natural deposits				
Gross Beta Particle Activity (pCi/L)	2012	Yes	(0)	50	1.35	ND to 4.05	Erosion of natural deposits				
Chromium VI (Hexavalent Chromium) (ppb)	2016 - 2018	Yes	0.02	NA	0.16	ND to 2.23	Erosion of natural deposits				
Radium 226 (pCi/L)	2015-2020	Yes	0.05	5	0.32	ND to 1.09	Erosion of natural deposits				
Radium 228 (pCi/L)	2015-2020	Yes	0.019	5	0.79	ND to 1.96	Erosion of natural deposits				
Uranium (pCi/L)	2014 - 2020	Yes	0.43	20	0.17	ND to 1.5	Erosion of natural deposits				
Arsenic (ppb)	2020	Yes	0.004	10	2.75	ND to 5	Erosion of natural deposits				
Fluoride (naturally occurring) (ppm) ¹	2019	Yes	1	2.0	0.25	ND to 0.42	Erosion of natural deposits				
Nitrate as N (ppm) ³	2020	Yes	10	10	2.03	ND to 6.66	Erosion of natural deposits				
Selenium (ppb)	2019	Yes	30	50	1.1	ND to 7	Erosion of natural deposits				

^{1 –} Fluoride: California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

	SECONDARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source										
Substance (with units)	Year Sampled	Compliance Achieved ¹	SMCL	Average Compliance Result	Range Detected	Typical Source					
Chloride (ppm)	2019	Yes	500	51	10 to 202	Leaching from natural deposits; Seawater influence					
Odor (Units)	2020	Yes	3	1.3	1 to 3	Naturally-occurring organic materials					
Specific Conductance (mmhos/cm)	2020	Yes	1600	526	265 to 849	Substances that form ions when in water; Seawater influence					
Sulfate (ppm)	2019	Yes	500	59	1 to 104	Leaching from natural deposits					
Total Dissolved Solids (ppm)	2020	Yes	1000	316	122 to 410	Leaching from natural deposits					
Turbidity (units)	2020	Yes	5	0.1	ND to 0.4	Soil runoff					
Zinc (ppm)	2019	Yes	5	0.02	ND to 0.2	Leaching from natural deposits; Treatment additive					

^{1 –} Yes: There are no PHGs, MCLGs, or mandatory standard health effects language for Secondary Substances because secondary MCLs are set based on aesthetic concerns.

OTHER SUBSTANCE	OTHER SUBSTANCES OF INTEREST - Collected at the Treatment Plant Effluent and/or at the Source									
Substance (with units)	Year Sampled	Average	Range D	etected						
Substance (wan units)	rear Samplea	Avoidgo	Low	High						
Alkalinity as CaCO ₃ (ppm)	2020	146	91	179						
Boron (ppm)	2020	0.6	ND	1.0						
Calcium (ppm)	2020	40	27	63						
Magnesium (ppm)	2019	13	ND	25						
pH (pH Units)	2020	7.52	6.81	8.17						
Sodium (ppm)	2019	45	16	132						
Strontium (ppb)	2019	227	ND	500						
Total Hardness as CaCO ₃ (ppm)	2019	161	102	276						
Total Hardness as Grains per Gallon (gpg)	2019	9	6	16						
Vanadium (ppb)	2019	0.2	ND	5						

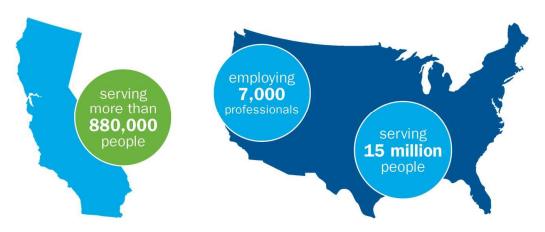
UNREGULATED CONTAMINANT MONITORING

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is necessary. Every five years, the EPA issues a new list of no more than 30 unregulated contaminants to be monitored.

ADDITIONAL WATER	QUALITY PARAME	TERS OF INTEREST	- Water Leaving the Treatment Facility or in Distribution System			
Parameter (with units)	Year Sampled	Average Result	Range I	Detected	Typical Source	
r dramotor (with anito)	Teal Sampleu	Average Result	Low	High	Typical Source	
Bromochloromethane (ppb)	2013 - 2015	0.14	0.08	0.19	By-product of drinking water disinfection	
Chlorate (ppb)	2013 - 2015	189	26	490	By-product of drinking water disinfection	
Molybdenum (ppb)	2013 - 2015	6	2.2	14.4	By-product of drinking water disinfection	
Strontium (ppb)	2013 - 2015	284	90.8	397.7	By-product of drinking water disinfection	
Vanadium (ppb)	2013 - 2015	1.41	0.3	5.6	By-product of drinking water disinfection	
Bromochloroacetic Acid (ppb)	2019	4.1	0.7	7.4	By-product of drinking water disinfection	
Bromodichloroacetic acid (ppb)	2019	3.8	ND	6.3	By-product of drinking water disinfection	
Chlorodibromoacetic acid (ppb)	2019	2.1	ND	3.5	By-product of drinking water disinfection	
Dibromoacetic Acid (ppb)	2019	1.8	0.3	3.3	By-product of drinking water disinfection	
Dichloroacetic Acid (ppb)	2019	5.3	0.5	13	By-product of drinking water disinfection	
Monobromoacetic Acid (ppb)	2019	0.3	ND	0.6	By-product of drinking water disinfection	
Total Haloacetic Acids - Br (ppb)	2019	12	1.4	21	By-product of drinking water disinfection	
Total Haloacetic Acids - HAA 9 (ppb)	2019	22	2	40	By-product of drinking water disinfection	
Trichloroacetic Acid (ppb)	2019	4.6	ND	7.5	By-product of drinking water disinfection	

PER- AND POLYFLUOROALKYL SUBSTANCES

Per- or polyfluoroalkyl substances (PFASs) are man-made substances used in a variety of products, such as: stain resistant fabric, non-stick coatings, firefighting foam, paints, waxes, and cleaning products. They are also components in some industrial processes like electronics manufacturing and oil recovery. While the EPA has not developed drinking water standards for PFAS, California American Water recognizes the importance of testing for these contaminants. Compounds detected are tabulated below, along with typical sources.


	UNREGULATED PERFLUORINATED COMPOUNDS									
Parameter	Units	Average Result	Range Detected	Typical Source						
Perfluorooctanoic Acid (PFOA)	ppt	1.9	ND to 8.2	Used for its emulsifier and surfactant properties in or as fluoropolymers (such as Teflon), fire fighting foams, cleaners, cosmetics, lubricants, paints, polishes, adhesives and photographic films						
Perfluorooctanesulfonic Acid (PFOS)	ppt	2.0	ND to 7.5	Manmade chemical; used in products for stain, grease, heat and water resistance						
Perfluorobutane sulfonic acid (PFBS)	ppt	4.0	ND to 17	Manmade chemical; used in commercial products to offer water- and stain-repellent properties.						

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

County of Monterey Health Department

https://www.co.monterey.ca.us/government/departments-a-h/health

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wqa.org

National Library of Medicine/National Institute of Health:

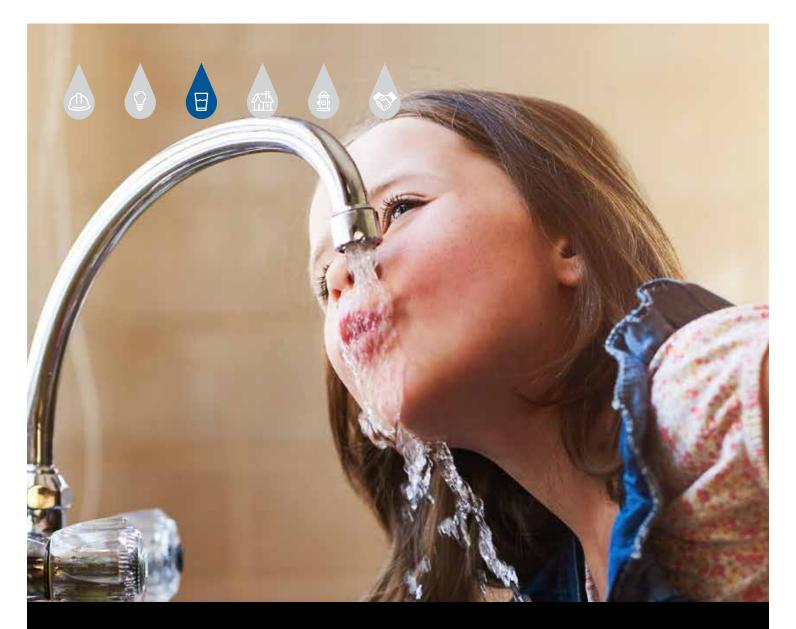
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

RALPH LANE | PWS ID: 2702004

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

Sincerely,

RICHARD SVINDLAND

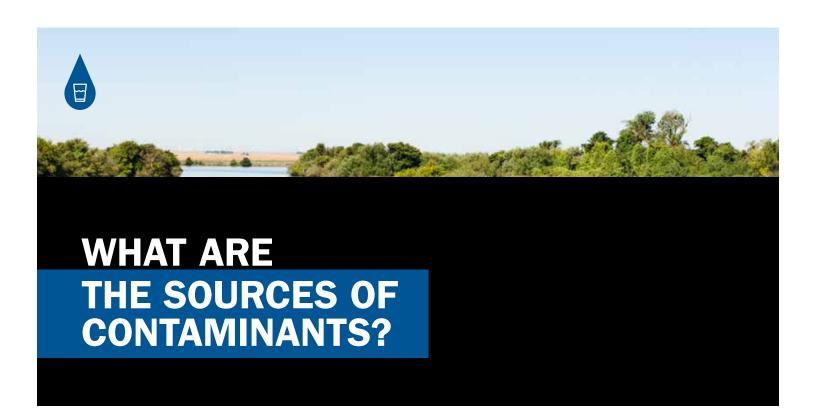

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.


In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

Ralph Lane is served entirely by groundwater sources from a local aquifer. Drinking water treatment technologies used in your water system include disinfection to ensure the bacteriological quality. The water supply is distributed for residential and commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water – Ralph Lane water system was completed in February 2003. No man-made contaminants have been detected in the groundwater supplies. The sources are considered vulnerable to high-density septic systems. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS.

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure

by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

LEAD IN SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water systems to test lead levels by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water does not serve any school site in the Ralph Lane water system.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years 32,000 years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- 4 MCLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results: Ralph Lane

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	MCL	PHG (MCLG)	Average Amount	Range o	f Detections	Violation	Typical Source
Substance (units)	Sampled*	WCL	PHG (MCLG)	Detected	Low	High		
Fluoride (naturally occurring) (ppm) ¹	2016	2.0	1	0.24	0.24	0.24	No	Erosion of natural deposits
Nitrate as N (ppm)	2018	10	10	0.44	0.44	0.44	No	Erosion of natural deposits
Nickel (ppb)	2016	100	12	11	11	11	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL/MRDL	MCLG	Average Amount	Range o	f Detections	Violation	Typical Source
Substance (units)	Sampled*	WICE/WINDL	WOLG	Detected	Low	High		
Total Trihalomethanes (TTHM) (ppb) ²	2017	80	NA ²	2.6	2.6	2.6	No	By-product of drinking water chlorination
Chlorine (ppm)	2018	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.37	1.14	1.55	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled*	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2017	1.3	0.3	5	0.358	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2017	15	0.2	5	0	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Cubatawaa (unita)	Year	SMCL	Average Amount	Range of Detec	tions	Violation	Typical Source	
Substance (units)	Sampled*	SWICE	Detected	Low	High	Violation	Typical Source	
Chloride (ppm)	2016	500	52	52	52	No	Leaching from natural deposits	
Odor (Units)	2016	3	1	1	1	No	Naturally-occurring organic materials	
Specific Conductance (μmhos/cm)	2018	1600	529	529	529	No	Substances that form ions when in water	
Sulfate (ppm)	2016	500	5	5	5	No	Leaching from natural deposits	
Total Dissolved Solids (ppm)	2018	1000	300	300	300	No	Leaching from natural deposits	
Zinc (ppm)	2016	5	0.09	0.09	0.09	No	Leaching from natural deposits	

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2018. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Outstance (units)	Versi Comunicati	A A D .ttd	Range of Detections			
Substance (units)	Year Sampled*	Average Amount Detected	Low	High		
Alkalinity as CaCO ₃ (ppm)	2018	180	180	180		
Calcium (ppm)	2018	34	34	34		
Magnesium (ppm)	2016	8	8	8		
pH (pH Units)	2018	6.93	6.93	6.93		
Sodium (ppm)	2016	57	57	57		
Total Hardness as CaCO3 (ppm)	2016	119	119	119		
Total Hardness as Grains per Gallon (gpg)	2016	7	7	7		
Strontium (ppb)	2016	200	200	200		
Vanadium (ppb)	2016	9	9	9		

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring- In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹Fluoride - California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

² TTHM-Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L).

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

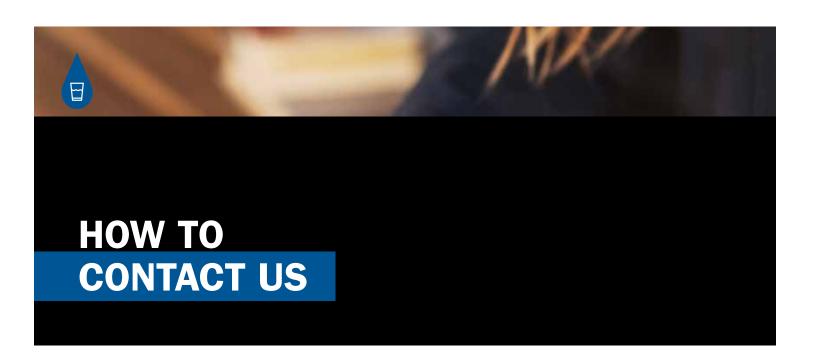
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

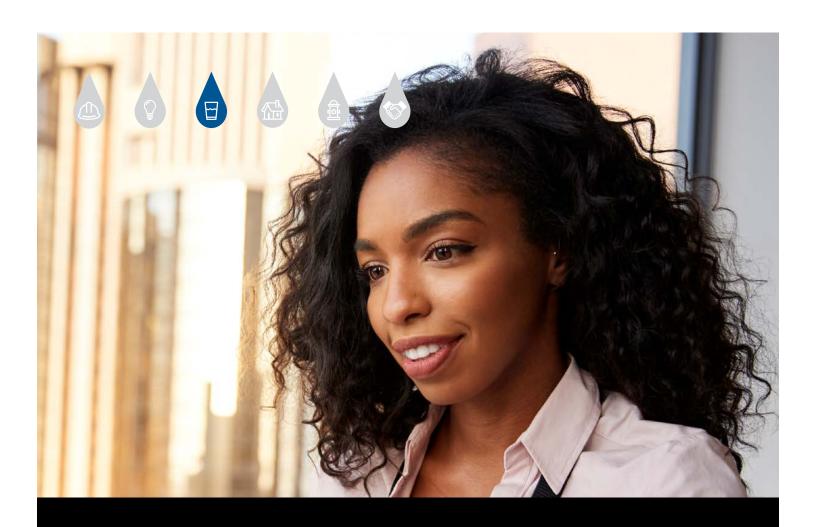
National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

RALPH LANE | PWS ID: 2702004

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

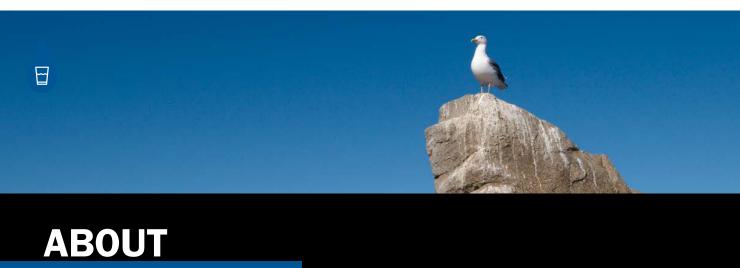
June Clouder

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.



WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

ABOUT YOUR WATER

Ralph Lane is served entirely by groundwater sources from a local aquifer. Drinking water treatment technologies used in your water system include disinfection for bacteriological quality. The water supply is distributed for residential and commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water – Ralph Lane water system was completed in February 2003. The sources that are considered to be vulnerable include drinking water treatment plants and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

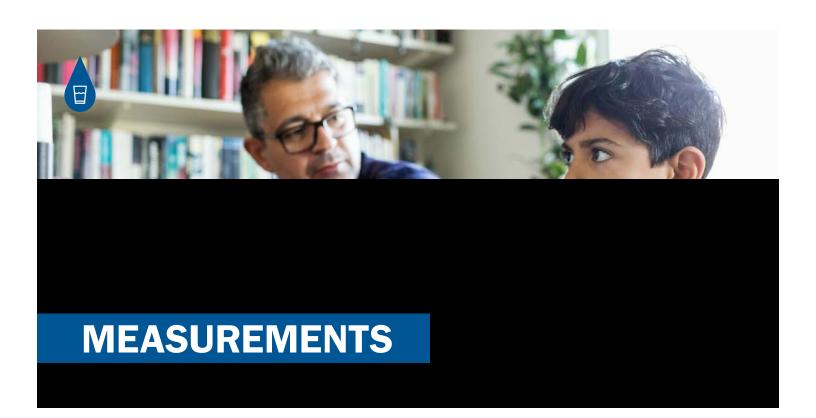
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

PFOA/PFOS Monitoring

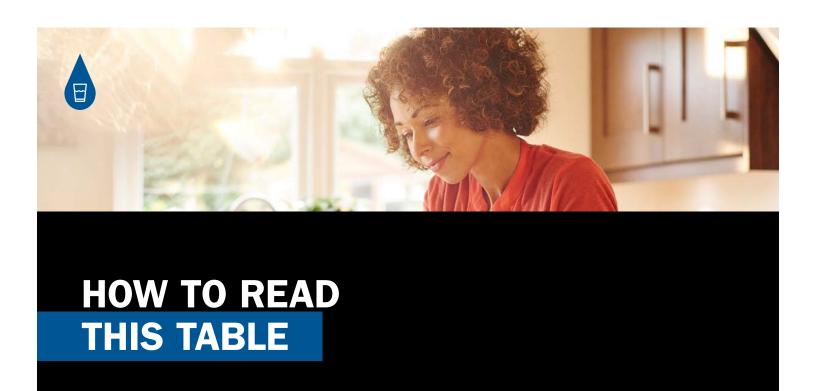
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source water of Ralph Lane water system in 2019. PFOA and PFOS were not detected in the water above the detection limits for the testing.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

Water Quality Results: Ralph Lane

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year Sampled*	MCL	PHG (MCLG)	Average Amount Detected	Range of Detections		Violation	Typical Source
					Low	High	Violation	rypical Source
Fluoride (naturally occurring) (ppm) ¹	2016	2.0	1	0.24	0.24	0.24	No	Erosion of natural deposits
Nitrate as N (ppm)	2019	10	10	0.41	0.40	0.41	No	Erosion of natural deposits
Nickel (ppb)	2016	100	12	11	11	11	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year Sampled*	MCL/MRDL	MCLG	Average Amount Detected	Range of Detections		Violation	Typical Source
					Low	High	Violation	rypical source
Total Trihalomethanes (TTHM) (ppb) ²	2017	80	NA ²	2.6	2.6	2.6	No	By-product of drinking water chlorination
Chlorine (ppm)	2019	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.26	0.96	1.61	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled*	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2017	1.3	0.3	5	0.358	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2017	15	0.2	5	0	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

There are no PHGs, MCLGs, or mandatory standard health effects language for these substances. The secondary MCLs are set on the basis of aesthetic concerns.

Substance (units)	Year Sampled*	SMCL	Average Amount Detected	Range of Detect	ions	Turked Course
				Low	High	Typical Source
Chloride (ppm)	2016	500	52	52	52	Leaching from natural deposits
Odor (Units)	2016	3	1	1	1	Naturally-occurring organic materials
Iron (ppb)	2019	300	28	ND	110	Leaching from natural deposits
Specific Conductance (μmhos/cm)	2019	1600	528	528	528	Substances that form ions when in water
Sulfate (ppm)	2016	500	5	5	5	Leaching from natural deposits
Total Dissolved Solids (ppm)	2019	1000	274	274	274	Leaching from natural deposits
Zinc (ppm)	2016	5	0.09	0.09	0.09	Leaching from natural deposits

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2019. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Substance (units)	Year Sampled*	Average Amount Detected	Range of Detections			
	rear Sampleu	Average Amount Detected	Low	High		
Alkalinity as CaCO ₃ (ppm)	2019	179	178	180		
Calcium (ppm)	2019	35	35	35		
Magnesium (ppm)	2016	8	8	8		
pH (pH Units)	2019	7.13	7.13	7.13		
Sodium (ppm)	2016	57	57	57		
Total Hardness as CaCO3 (ppm)	2016	119	119	119		
Total Hardness as Grains per Gallon (gpg)	2016	7	7	7		
Strontium (ppb)	2016	200	200	200		
Vanadium (ppb)	2016	9	9	9		

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Fluoride - California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

² TTHM - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L).

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

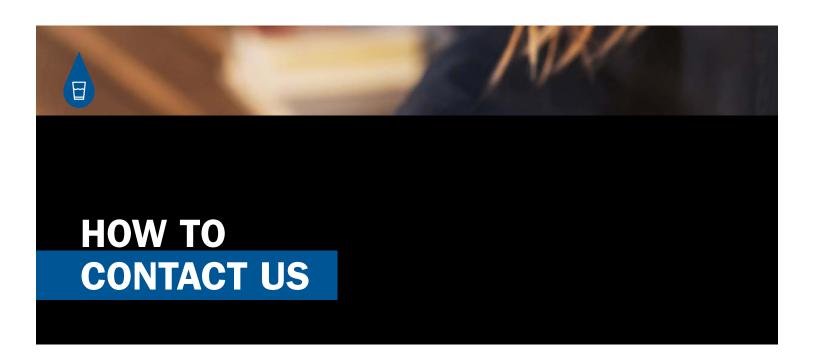
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

Ralph Lane PWS ID: CA2702004

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich SvindlandPresident
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

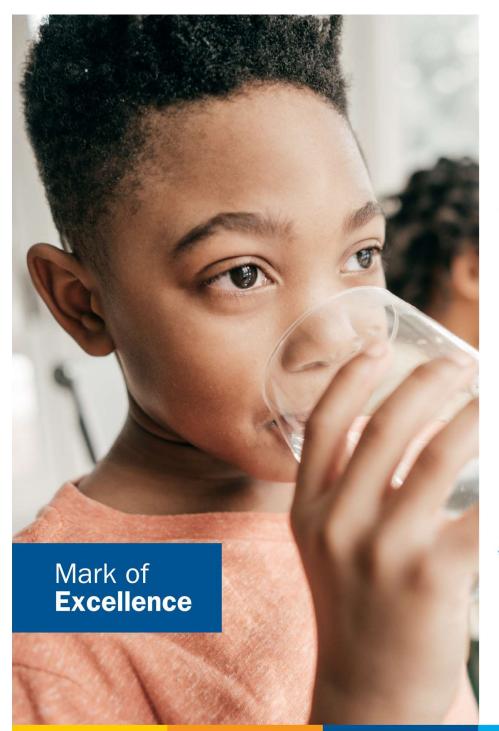
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

April Chulm

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

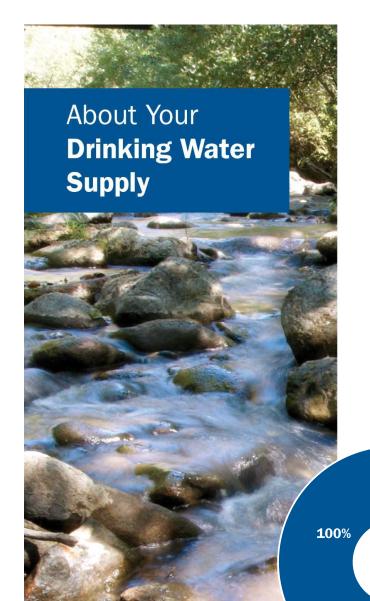
A message from our President	2
What is a Consumer Confidence Report	3
Mark of Excellence	4
About Your Drinking Water Supply	5
What are the Sources of Contaminants?	6
Protecting Your Drinking Water Supply	7
About Lead	٤
mportant Information About Your Water	g
Water Quality Results	10
Definitions of Terms Used in Document	11
Water Quality Results: Detailed Charts	12-14
About Us	15
Contact Us	16

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

WHERE YOUR WATER COMES FROM

Ralph Lane is served entirely by a groundwater well in the local aquifer. The well water is disinfected with chlorine for bacteriological quality. The water supply is distributed for residential and commercial use.

An assessment of the drinking water sources for the California American Water – Ralph Lane water system was completed in February 2003. The sources that are considered vulnerable to drinking water treatment plants and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA.

QUICK FACTS ABOUT THE RALPH LANE SYSTEM

Water source:

Groundwater well

Water treatment:

The water is disinfected with chlorine before distributed to customers for consumption.

SOURCE OF SUPPLY FOR THE SYSTEM

Groundwater

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.							
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.							
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.							
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.							
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.							

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

WHAT CAN YOU DO?

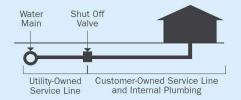
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Dr. Jack Wang at 831-646-3269.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

 Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

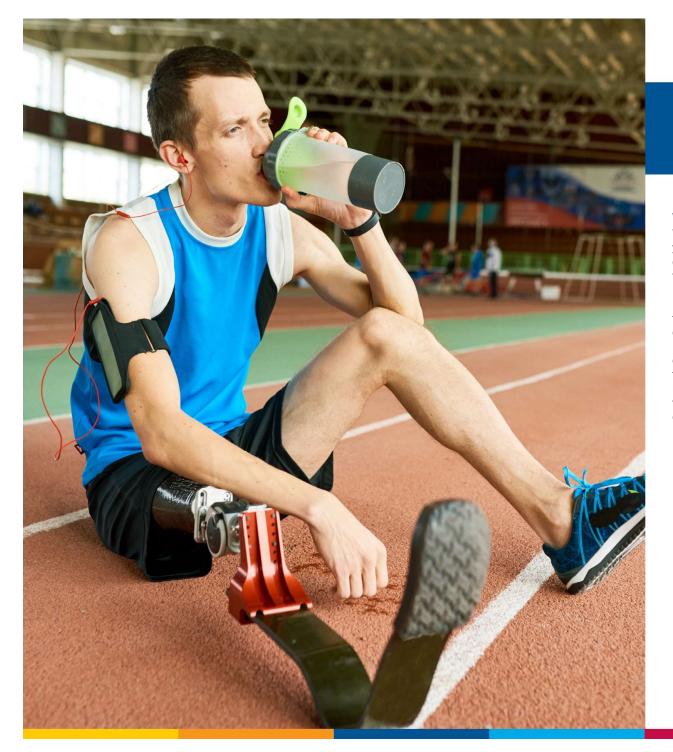
6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

Important Information About **Drinking Water**

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm):
A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

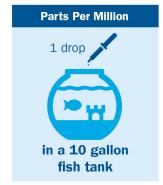
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

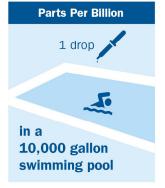
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

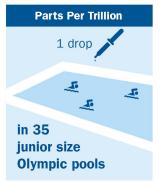
RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

Water Quality **Results**

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

LEAD AND COPPER MONITORING PROGRAM - At least 5 tap water samples collected at customers' taps every three years										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	Action Level (AL)	90 th Percentile	No. of Homes Sampled	Homes Above Action Level	Typical Source		
Lead (ppb)	2020	Yes	0.2	15	0	6	0	Corrosion of household plumbing systems.		
Copper (ppm)	2020	Yes	0.3	1.3	0.175	6	0	Corrosion of household plumbing systems.		

	DISINFECTION BYPRODUCTS - Collected in the Distribution System										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected ¹	Typical Source				
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	1.1	NA	By-product of drinking water disinfection.				

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

1 - NA: One location only.

	DISINFECTANTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	· IMBDIGI N		Minimum Chlorine Compliance Residual Result		Range Detected	Typical Source				
Distribution System Chlorine Residual (ppm) ¹	2020	Yes	4	4	1.11	1.32	1.11 to 1.56	Water additive used to control microbes.				

 ${\bf 1} \cdot {\bf Data} \ {\bf represents} \ {\bf the} \ {\bf average} \ {\bf of} \ {\bf chlorine} \ {\bf residuals} \ {\bf measured} \ {\bf throughout} \ {\bf our} \ {\bf distribution} \ {\bf system}.$

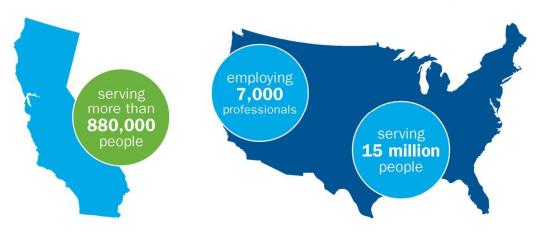
PRIMARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source											
Substance (with units)	Year Sampled	Sampled Compliance MC		PHG or MCLG	Average Compliance Result	Range Detected ²	Typical Source				
Fluoride (naturally occurring) (ppm) ¹	2016	Yes	2.0	1	0.24	NA	Erosion of natural deposits				
Nitrate as N (ppm)	2020	Yes	10	10	0.37	NA	Erosion of natural deposits				
Nickel (ppb)	2016	Yes	100	12	11	NA	Erosion of natural deposits				

^{1 –} Fluoride: California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

^{2 -} NA: One detection only

SECONDARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source											
Substance (with units)	Year Sampled SMCI Compliance Range Detected ²										
Chloride (ppm)	2016	Yes	500	52	NA	Leaching from natural deposits					
Odor (Units)	2016	Yes	3	1	NA	Naturally-occurring organic materials					
Iron (ppb)	2020	Yes	300	45	ND to 180	Leaching from natural deposits					
Specific Conductance (mmhos/cm)	2020	Yes	1600	461	228 to 533	Substances that form ions when in water					
Sulfate (ppm)	2016	Yes	500	5	NA	Leaching from natural deposits					
Total Dissolved Solids (ppm)	2019	Yes	1000	274	NA	Leaching from natural deposits					
Zinc (ppm)	2016	Yes	5	0.09	NA	Leaching from natural deposits					

^{1 –} Yes: There are no PHGs, MCLGs, or mandatory standard health effects language for Secondary Substances because secondary MCLs are set based on aesthetic concerns 2 – NA: Only one detection


OTHER SUBSTANC	OTHER SUBSTANCES OF INTEREST - Collected at the Treatment Plant Effluent and/or at the Source									
Substance (with units)	Year Sampled	Average	Range D	etected						
,			Low	High						
Alkalinity as CaCO ₃ (ppm)	2020	171	169	177						
Calcium (ppm)	2020	32	30	34						
Magnesium (ppm)	2016	8	8	8						
pH (pH Units)	2020	7.13	7.10	7.15						
Sodium (ppm)	2016	57	57	57						
Total Hardness as CaCO ₃ (ppm)	2016	119	119	119						
Total Hardness as Grains per Gallon (gpg)	2016	7	7	7						
Strontium (ppb)	2016	200	200	200						
Vanadium (ppb)	2016	9	9	9						

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

County of Monterey Health Department:

https://www.co.monterey.ca.us/government/departments-a-h/health

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wqa.org

National Library of Medicine/National Institute of Health:

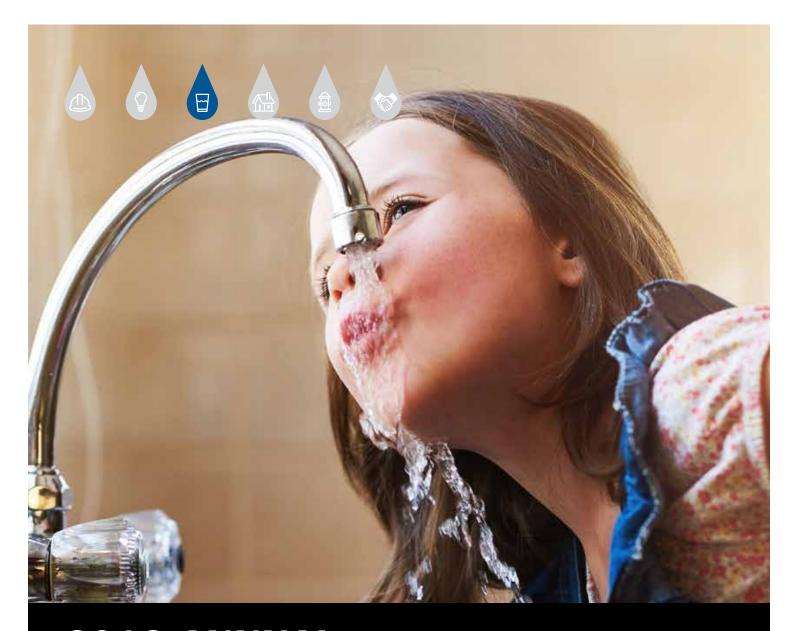
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

RYAN RANCH | PWS ID: 2701446

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

Sincerely.

RICHARD SVINDLAND


President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

Ryan Ranch is served entirely by groundwater sources from the Santa Margarita Aquifer. Drinking water treatment technologies used in your water system include arsenic, iron, and manganese removal; disinfection byproduct control; corrosion control; pH adjustment; and disinfection to ensure the bacteriological quality. The water supply is distributed for commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water – Ryan Ranch water system was completed in February 2003. No man-made contaminants have been detected in the groundwater supplies. The sources are considered vulnerable to the following: drinking water treatment plants, high-density housing and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS,

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure

by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

LEAD IN SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water systems to test lead levels by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water does not serve any school site in the Ryan Ranch water system.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- **MCLG** is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results: Ryan Ranch

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	MCL	PHG	Average Amount	Range of D	Detections	Violation	Typical Source
Substance (units)	Sampled*	MCL	(MCLG)	Detected Low	High	violation	Typical Cource	
Gross Alpha Particle Activity (pCi/L)	2016	15	(0)	4.78	4.78	4.78	No	Erosion of natural deposits
Radium 226 (pCi/L)	2017-2018	5	0.05	1.10	0.349	1.74	No	Erosion of natural deposits
Arsenic (ppb) 1	2018	10	0.004	4.8	3	7	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ²	2016	2.0	1	0.63	0.63	0.63	No	Erosion of natural deposits
Nitrate as N (ppm)	2018	10	10	0.92	ND	1.54	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCI / MRDI	MCLC	MCLG Average Amount Detected	Range of Detections		Violation	Typical Source
Substance (units)	Sampled		WICEG		Low	High	Violation	Typical Source
Total Trihalomethanes (TTHM) (ppb) ³	2018	80	NA ³	15.2	9.5	29.5	No	By-product of drinking water chlorination
Haloacetic Acids (ppb) ³	2018	60	NA ³	15.7	10.4	23.7	No	By-product of drinking water chlorination
Chlorine (ppm)	2018	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.35	0.26	2.7	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2018	1.3	0.3	10	0.588	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2018	15	0.2	10	1	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Bacterial Results (Measured on the Water in the Distribution System)

Substance (units)	Year Sampled	MCL	MCLG	Highest number of samples detected	Violation	Typical Source
Total Coliform Bacteria	2018	Greater than 1 positive monthly sample	(0)	1	No	Naturally present in the environment

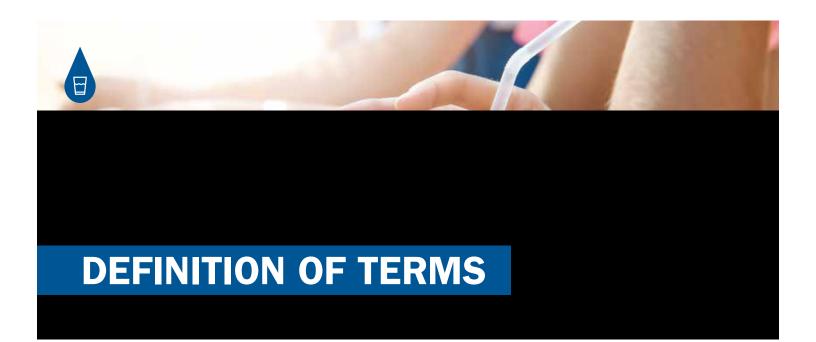
Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year Sampled*	SMCL	Average Amount Detected	Range of Detections		Violation	Typical Source
				Low	High	Violation	Typical Source
Chloride (ppm)	2016	500	202	202	202	No	Leaching from natural deposits; Seawater influence
Manganese (ppb)	2018	50	19	ND	57	No	Leaching from natural deposits
Specific Conductance (µmhos/cm)	2018	1600	1196	465	1565	No	Substances that form ions when in water; Seawater influence
Sulfate (ppm)	2016	500	167	167	167	No	Leaching from natural deposits; Industrial wastes
Total Dissolved Solids (ppm)	2018	1000	714	714	714	No	Leaching from natural deposits

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2018. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Cubatanas (unita)	Year	Average Amount	Range of Detections		
Substance (units)	Sampled*	Detected	Low	High	
Alkalinity as CaCO ₃ (ppm)	2018	230	139	280	
Calcium (ppm)	2018	71	49	120	
Magnesium (ppm)	2016	28	28	28	
pH (pH Units)	2018	7.38	7.05	8.33	
Potassium (ppm)	2016	6	6	6	
Radon (pCi/L)	2010	614	163	905	
Sodium (ppm)	2016	145	145	145	
Total Hardness as CaCO ₃ (ppm)	2016	368	368	368	
Total Hardness as Grains per Gallon (gpg)	2016	22	22	22	
Boron (ppm)	2016	0.2	0.2	0.2	
Strontium (ppb)	2016	500	500	500	


^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring- In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Arsenic - California American Water's ground water arsenic removal facility continues to produce water with arsenic levels below the current federal and state standards. While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

² Fluoride- California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

³TTHM/HAA5- Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L), dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

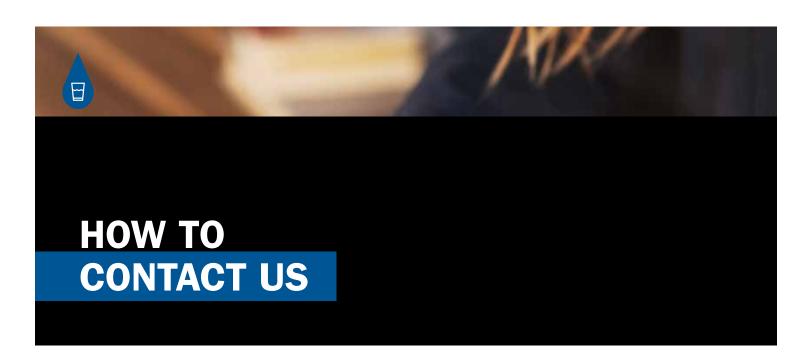
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

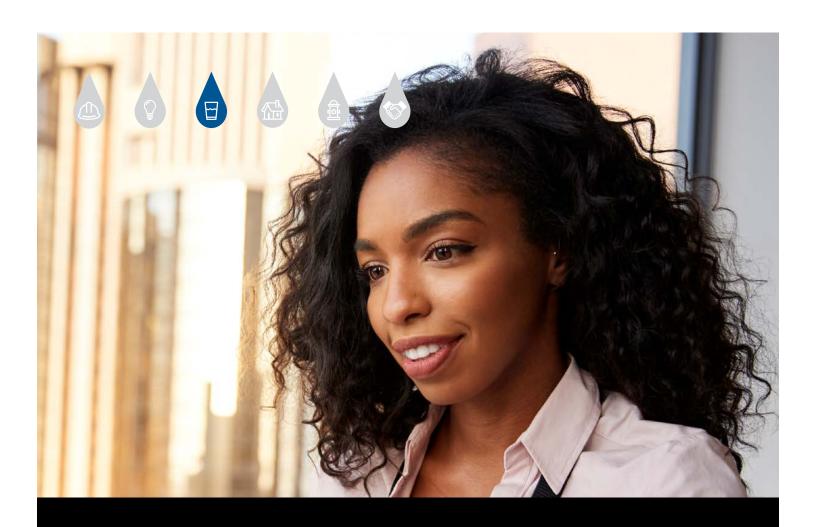
National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa $(888)\ 237-1333$.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

RYAN RANCH | PWS ID: 2701446

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

June Clarke

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

Ryan Ranch is served entirely by groundwater sources from the Santa Margarita Aquifer. Drinking water treatment technologies used in your water system include arsenic, iron, and manganese removal; disinfection byproduct control; corrosion control; pH adjustment; and disinfection for bacteriological quality. The water supply is distributed for commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water – Ryan Ranch water system was completed in February 2003. The sources that are considered to be vulnerable include drinking water treatment plants and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

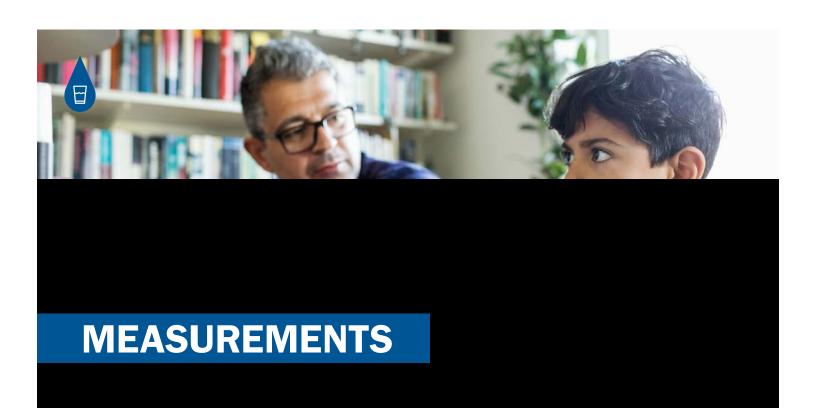
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

PFOA/PFOS Monitoring

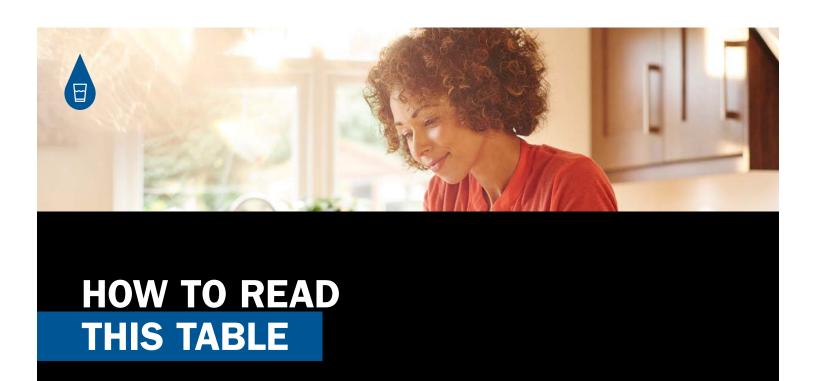
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source water of Ryan Ranch water system in 2019. PFOA and PFOS were not detected in the water above the detection limits for the testing.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

Water Quality Results: Ryan Ranch

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	MCL	PHG	Average Amount	Range of D	Range of Detections		Typical Source
Substance (units)	Sampled*	MCL	(MCLG)	Detected	Low	High	Violation	турісаі Зойгсе
Gross Alpha Particle Activity (pCi/L)	2019	15	(0)	8.60	8.60	8.60	No	Erosion of natural deposits
Radium 226 (pCi/L)	2017-2018	5	0.05	1.10	0.349	1.74	No	Erosion of natural deposits
Arsenic (ppb) ¹	2019	10	0.004	4.6	ND	9	No	Erosion of natural deposits
Cadmium (ppb)	2019	5	0.04	1.3	ND	2	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ²	2019	2.0	1	0.38	0.23	0.66	No	Erosion of natural deposits
Nitrate as N (ppm)	2019	10	10	0.84	ND	1.51	No	Erosion of natural deposits
Selenium (ppb)	2019	50	30	7.0	6	8	No	Erosion of natural deposits
Toluene (ppb)	2019	150	150	1.1	ND	5.6	No	Underground tank leaks

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL/ MRDL	MCLG	Average Amount Detected	Range of Detections		Violation	Typical Source
	Sampled	WICE/ WINDL			Low	High	Violation	rypical source
Total Trihalomethanes (TTHM) (ppb) ³	2019	80	NA ³	44.5	6	110.8	No	By-product of drinking water chlorination
Haloacetic Acids (ppb) ³	2019	60	NA ³	23.1	3.7	37.2	No	By-product of drinking water chlorination
Chlorine (ppm)	2019	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.03	0.01	2.00	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2018	1.3	0.3	10	0.588	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2018	15	0.2	10	1	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

There are no PHGs, MCLGs, or mandatory standard health effects language for these substances. The secondary MCLs are set on the basis of aesthetic concerns.

Substance (units)	Year	SMCL	Average Amount	Range of D	Detections	Turied Saurea
Substance (units)	Sampled*	SWICE	Detected	Low	High	Typical Source
Chloride (ppm)	2019	500	230	189	219	Leaching from natural deposits
Odor (Units)	2019	3	2	2	2	Naturally-occurring organic materials
Iron (ppb)	2019	300	27	ND	250	Leaching from natural deposits
Manganese (ppb)	2019	50	21	ND	184	Leaching from natural deposits
Specific Conductance (μmhos/cm)	2019	1600	1256	1002	1486	Substances that form ions when in water
Sulfate (ppm)	2019	500	106	51	173	Leaching from natural deposits
Total Dissolved Solids (ppm)	2019	1000	719	502	900	Leaching from natural deposits

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2019. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Substance (units)	Year	Average Amount	Range of Detections			
Substance (units)	Sampled*	Detected	Low	High		
Alkalinity as CaCO ₃ (ppm)	2019	222	132	291		
Calcium (ppm)	2019	79	47	98		
Magnesium (ppm)	2019	29	21	33		
pH (pH Units)	2019	7.44	7.08	7.83		
Sodium (ppm)	2019	139	116	178		
Total Hardness as CaCO ₃ (ppm)	2019	303	201	375		
Total Hardness as Grains per Gallon (gpg)	2019	18	12	22		
Boron (ppm)	2019	0.1	ND	0.2		
Strontium (ppb)	2019	400	300	500		
Vanadium (ppb)	2019	6	5	7		

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Arsenic - California American Water's groundwater arsenic removal facility continues to produce water with arsenic levels below the current federal and state standards. While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

² Fluoride - California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

³ TTHM/HAA5 - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

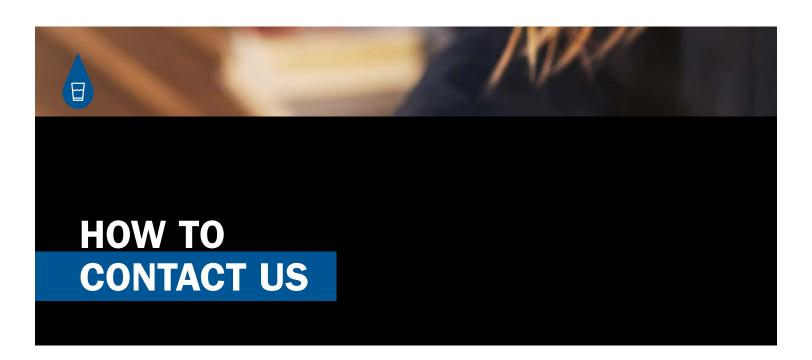
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa $(888)\ 237\ 1333$.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

Ryan Ranch PWS ID: CA2701446

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich Svindland
President
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

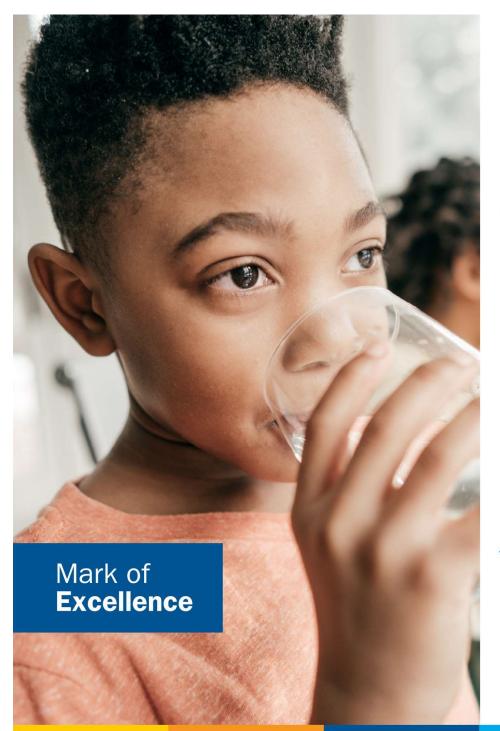
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

June Chulu

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

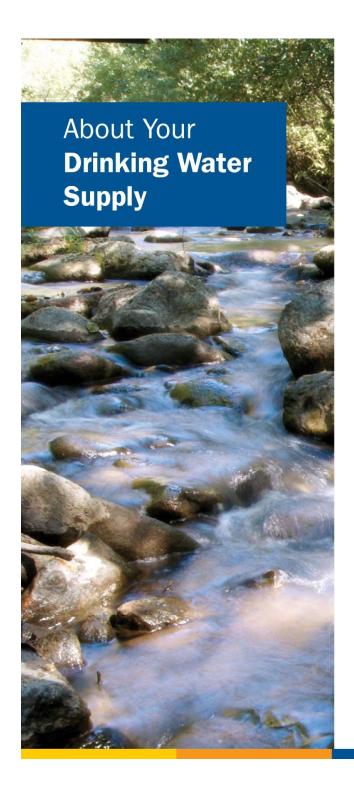
A message from our President	:
What is a Consumer Confidence Report	;
Mark of Excellence	
About Your Drinking Water Supply	!
What are the Sources of Contaminants?	(
Protecting Your Drinking Water Supply	
About Lead	;
Important Information About Your Water	!
Water Quality Results	10
Definitions of Terms Used in Document	1:
Water Quality Results: Detailed Charts	12-1
About Us	1
Contact Us	1

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

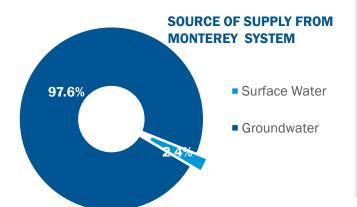
EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.


Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

WHERE YOUR WATER COMES FROM

For most of the year, Ryan Ranch was served by groundwater from the local aquifer. In December 2020, the water source to Ryan Ranch was switched to Monterey system, which is served by groundwater sources from the Santa Margarita, Paso Robles, and Carmel Alluvial aquifers as well as surface water from the Sand City Desalination Plant and groundwater recharged by the Pure Water Monterey Project. Drinking water treatment technologies used in the system include reverse osmosis, iron, manganese and arsenic removal, corrosion control, and disinfection for bacteriological quality.

An assessment of the drinking water sources for the California American Water's Ryan Ranch and Monterey water system was completed in February 2003. This assessment is an evaluation of drinking water sources to determine the "possible contaminating activities" (PCAs) to which a source is most vulnerable. PCAs are current or historic human activities that are actual or potential origins of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA.

QUICK FACTS ABOUT THE RYAN RANCH SYSTEM

Prior to December 2020

Water source:

Groundwater

Water treatment:

Treatment include arsenic removal corrosion control and disinfection with chlorine for bacteriological quality

After December 2020

Water sources:

Groundwater wells in Carmel Valley Groundwater Wells in Seaside Sand City Desal Plant Pure Water Monterey Project

Water treatment:

Treatment technologies used in the system include reverse osmosis, iron and manganese removal and corrosion control. The treated water is disinfected with chlorine for bacteriological quality.

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

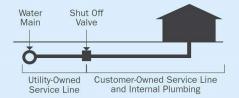
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Dr. Jack Wang at (831)646-3269.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

Important Information About **Drinking Water**

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich
Principal Scientist,
Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

OTHER INFORMATION

Since the system switched its source in the reporting year, this report, when applicable, includes water quality data from samples collected from the Monterey Water system (PSWID CA 2710004) in 2020.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

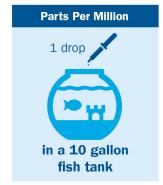
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

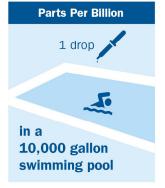
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

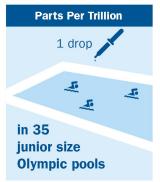
RAA: Running Annual Average

Secondary Maximum Contaminant Level (**SMCL**): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

11

Water Quality Results

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 10 tap water samples collected at customers' taps every 3 years										
Substance (with units) Year Sampled Compliance Achieved MCLG Action Level (AL) Poth Percentile Sampled No. of Homes Sampled Homes Above Action Level Action Level Typical Source						Typical Source					
Lead (ppb)	2018	Yes	0.2	15	1	10	0	Corrosion of household plumbing systems.			
Copper (ppm)	2018	Yes	0.3	1.3	0.588	10	0	Corrosion of household plumbing systems.			

	DISINFECTION BYPRODUCTS - Collected in the Distribution System											
Substance (with units) Year Sampled Compliance Achieved MCLG MCL Highest Compliance Result Range Detected							Typical Source					
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	46.4	ND to 70.0	By-product of drinking water disinfection.					
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	22.2	ND to 31.6	By-product of drinking water disinfection.					

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

	DISINFECTANTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Minimum Chlorine Residual	Compliance Result	Range Detected	Typical Source				
Distribution System Chlorine Residual (ppm) ¹	2020	Yes	4	4	0.05	1.05	0.05 to 2.4	Water additive used to control microbes.				

^{1 -} Data represents the monthly average of chlorine residuals measured throughout our distribution system.

	TURBIDITY - Continuous Monitoring at the Sand City Desalination Plant										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Single Measurement and Lowest Monthly % of Samples ≤0.3 NTU	Typical Source					
	2020	Yes	0	TT: Single result >0.5 NTU	0.39	Soil runoff.					
Turbidity (NTU)	2020	Yes	NA	TT: At least 95% of samples ≤0.1 NTU	99.8%	Soil runoff.					

	PRIMARY REGULATED SUBSTANCES - Collected at the Treatment Plant or Sources										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Average Compliance Result	Range Detected	Typical Source				
Gross Alpha Particle Activity (pCi/L)	2015-2020	Yes	(0)	15	1.15	ND to 6.54	Erosion of natural deposits				
Radium 226 (pCi/L)	2015-2020	Yes	0.05	5	0.32	ND to 1.09	Erosion of natural deposits				
Radium 228 (pCi/L)	2015-2020	Yes	0.019	5	0.79	ND to 1.96	Erosion of natural deposits				
Uranium (pCi/L)	2014 - 2020	Yes	0.43	20	0.17	ND to 1.5	Erosion of natural deposits				
Arsenic (ppb)	2020	Yes	0.004	10	5.16	ND to 10	Erosion of natural deposits				
Cadmium (ppb)	2019	Yes	0.04	5	1.3	ND to 2	Erosion of natural deposits				
Fluoride (naturally occurring) (ppm) ¹	2019	Yes	1	2.0	0.38	0.23 to 0.66	Erosion of natural deposits				
Nitrate as N (ppm)	2020	Yes	10	10	2.00	ND to 6.66	Erosion of natural deposits				
Selenium (ppb)	2019	Yes	30	50	7.0	6 to 8	Erosion of natural deposits				
Toluene (ppb)	2019	Yes	150	150	1.1	ND to 5.6	Leaking of underground storage tank				

^{1 –} Fluoride: California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

SECONDARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source							
Substance (with units)	Year Sampled	Compliance Achieved ¹	SMCL	Average Compliance Result	Range Detected	Typical Source	
Chloride (ppm)	2019	Yes	500	230	189 to 219	Leaching from natural deposits	
Odor (Units)	2020	Yes	3	1.3	1 to 3	Naturally-occurring organic materials	
Iron (ppb)	2020	Yes	300	23	ND to 600	Leaching from natural deposits	
Manganese (ppb)	2020	Yes	50	7	ND to 172	Leaching from natural deposits	
Specific Conductance (mmhos/cm)	2020	Yes	1600	551	265 to 1607	Substances that form ions when in water	
Sulfate (ppm)	2019	Yes	500	106	51 to 173	Leaching from natural deposits	
Total Dissolved Solids (ppm)	2020	Yes	1000	400	122 to 824	Leaching from natural deposits	
Turbidity (units)	2020	Yes	5	0.1	ND to 0.4	Soil runoff	

1 – Yes: There are no PHGs, MCLGs, or mandatory standard health effects language for Secondary Substances because secondary MCLs are set based on aesthetic concerns.

OTHER SUBSTANCES OF INTEREST - Collected at the Treatment Plant Effluent and/or at the Source							
Substance (with units)	Year Sampled	Average	Range Detected				
Substance (wan ames)	rear Samplea	Avoidgo	Low	High			
Alkalinity as CaCO ₃ (ppm)	2020	150	91	304			
Calcium (ppm)	2020	42	27	110			
Magnesium (ppm)	2019	29	21	33			
pH (pH Units)	2020	7.52	6.81	8.17			
Sodium (ppm)	2019	139	116	178			
Total Hardness as CaCO ₃ (ppm)	2019	303	201	375			
Total Hardness as Grains per Gallon (gpg)	2019	18	12	22			
Boron (ppm)	2020	0.6	ND	1.0			
Strontium (ppb)	2019	400	300	500			
Vanadium (ppb)	2019	6	5	7			

PER- AND POLYFLUOROALKYL SUBSTANCES

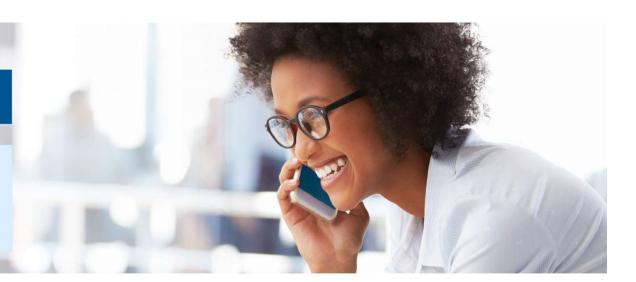
Per- or polyfluoroalkyl substances (PFASs) are man-made substances used in a variety of products, such as: stain resistant fabric, non-stick coatings, firefighting foam, paints, waxes, and cleaning products. They are also components in some industrial processes like electronics manufacturing and oil recovery. While the EPA has not developed drinking water standards for PFAS, California American Water recognizes the importance of testing for these contaminants. Compounds detected are tabulated below, along with typical sources.


UNREGULATED PERFLUORINATED COMPOUNDS								
Parameter	Units	Average Result	Range Detected	Typical Source				
Perfluorooctanoic Acid (PFOA)	ppt	1.9	ND to 8.2	Used for its emulsifier and surfactant properties in or as fluoropolymers (such as Teflon), fire fighting foams, cleaners, cosmetics, lubricants, paints, polishes, adhesives and photographic films				
Perfluorooctanesulfonic Acid (PFOS)	ppt	2.0	ND to 7.5	Manmade chemical; used in products for stain, grease, heat and water resistance				
Perfluorobutane sulfonic acid (PFBS)	ppt	4.0	ND to 17	Manmade chemical; used in commercial products to offer water- and stain-repellent properties.				

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.



CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

County of Monterey Health Department

https://www.co.monterey.ca.us/government/departments-a-h/health

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wga.org

National Library of Medicine/National Institute of Health:

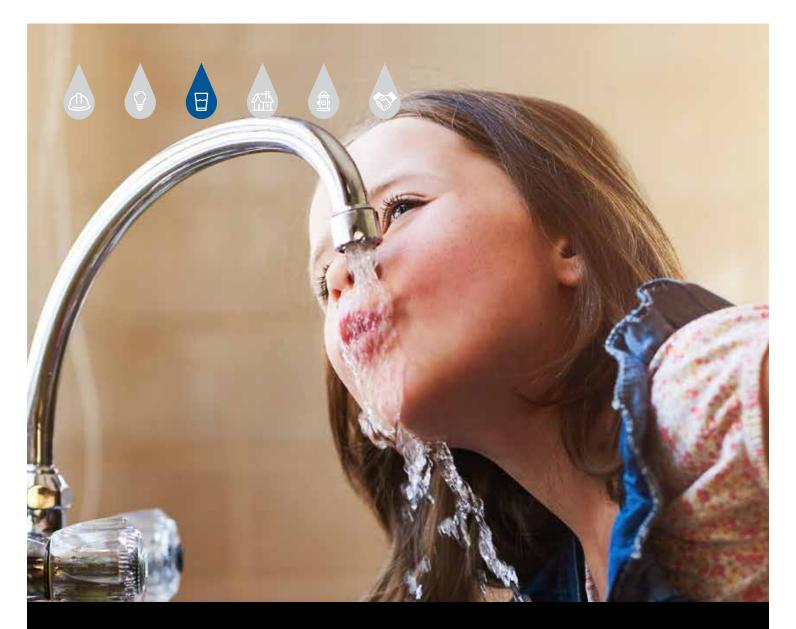
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

TORO | PWS ID: 2710021

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

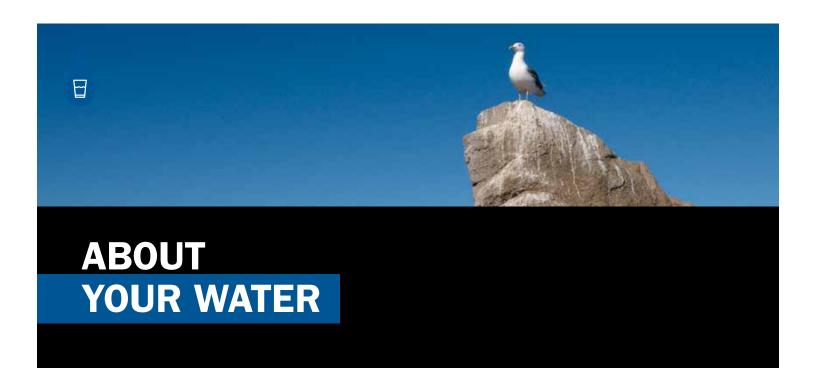
Sincerely.

RICHARD SVINDLAND

President

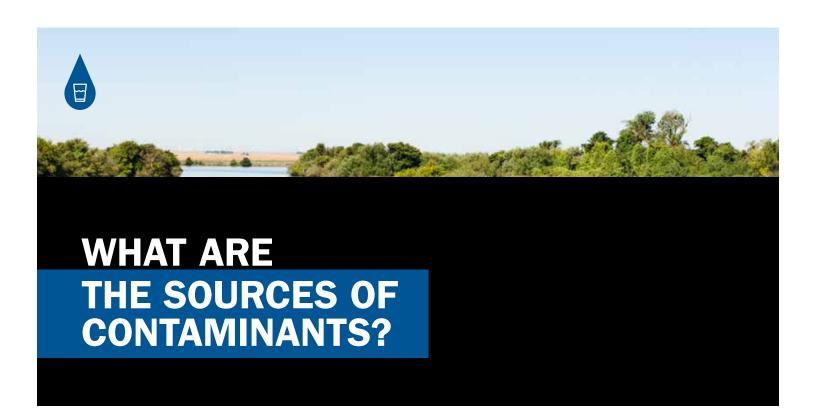
Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)


California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.



Toro is served entirely by groundwater sources. The water supply is distributed for residential use. The treatment technologies include coagulation and filtration for arsenic removal, pH adjustment for corrosion control, and disinfection to ensure the bacteriological quality.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water - Toro water system was completed in February 2003. No man-made contaminants have been detected in the groundwater supplies. The sources are considered vulnerable to the following: drinking water treatment plants, high-density housing, and water supply wells.

A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS,

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure

by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

LEAD IN SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water systems to test lead levels by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water does not serve any school site in the Toro water system.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years 32,000 years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- 1 Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- 4 MCLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- 7 A No under Violation indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results: Toro

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	MCL	PHG	Average Amount	Range of	Detections	Violation	Typical Source
Substance (units)	Sampled*	WICE	(MCLG)	Detected	Low	High	Violation	Typical Source
Arsenic (ppb) ¹	2018	10	0.004	5.8	4	7	No	Erosion of natural deposits
Chromium VI (Hexavalent Chromium) (ppb)	2016	NA	0.02	0.51	ND	1.01	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ²	2016	2.0	1	0.26	0.26	0.26	No	Erosion of natural deposits
Nitrate as N (ppm)	2018	10	10	2.34	2.30	2.38	No	Erosion of natural deposits
Selenium (ppb)	2016	50	30	7.5	7	8	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL/ MRDL	MCLG	Average Amount	Range of Detections		Violation	Typical Source
Substance (units)	Sampled	WICE/ WINDL	WICEG	Detected	Low	High	Violation	турісаі Зойгсе
Total Trihalomethanes (TTHM) (ppb) ³	2018	80	NA ³	5.65	2.9	8.4	No	By-product of drinking water chlorination
Haloacetic Acids (ppb) ³	2018	60	NA ³	1.1	ND	2.2	No	By-product of drinking water chlorination
Chlorine (ppm)	2018	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.51	0.70	1.92	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled*	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2016	1.3	0.3	10	0.174	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2016	15	0.2	10	4	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Bacterial Results (Measured on the Water in the Distribution System)

Substance (units)	Year Sampled	MCL	MCLG	Highest number of samples detected	Violation	Typical Source
Total Coliform Bacteria	2018	Greater than 1 positive monthly sample	(0)	1	No	Naturally present in the environment

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year	SMCL	Average Amount	Range of	Detections	Violation	Typical Source
Substance (units)	Sampled*	SWICE	Detected	Low	High	riolation	
Chloride (ppm)	2016	500	408	368	448	No	Leaching from natural deposits
Iron (ppb) ⁴	2018	300	19	ND	230	No	Leaching from natural deposits
Specific Conductance (µmhos/cm)	2018	1600	1560	1560	1560	No	Substances that form ions when in water
Sulfate (ppm)	2016	500	38	36	41	No	Leaching from natural deposits
Total Dissolved Solids (ppm)	2018	1000	854	854	854	No	Leaching from natural deposits

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2018. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Cubatana (unita)	Very Completi	Average Amount	Range of Do	etections
Substance (units)	Year Sampled*	Detected	Low	High
Alkalinity as CaCO ₃ (ppm)	2018	116	96	132
Calcium (ppm)	2018	38	38	38
Magnesium (ppm)	2016	34	30	38
pH (pH Units)	2018	7.34	7.02	7.82
Radon	2010	393	430	638
Sodium (ppm)	2016	203	193	213
Total Hardness as CaCO ₃ (ppm)	2016	235	217	252
Total Hardness as Grains per Gallon (gpg)	2016	14	13	15
Boron (ppm)	2016	0.14	0.13	0.15
Strontium (ppb)	2016	300	300	300
Vanadium (ppb)	2016	5	5	5

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring- In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Arsenic- California American Water's ground water arsenic removal facility continues to produce water with arsenic levels below the current federal and state standards. While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

² Fluoride- California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

³TTHM/HAA5- Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

⁴ Iron - one detection; potential lab/sampling error

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

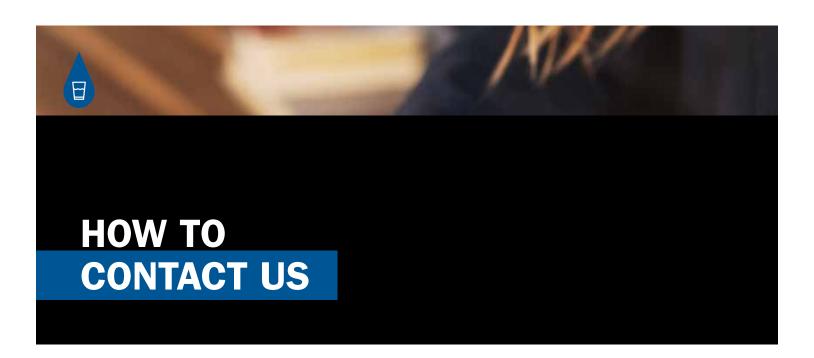
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board

TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

2018 Annual Water Quality Report | TORO

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

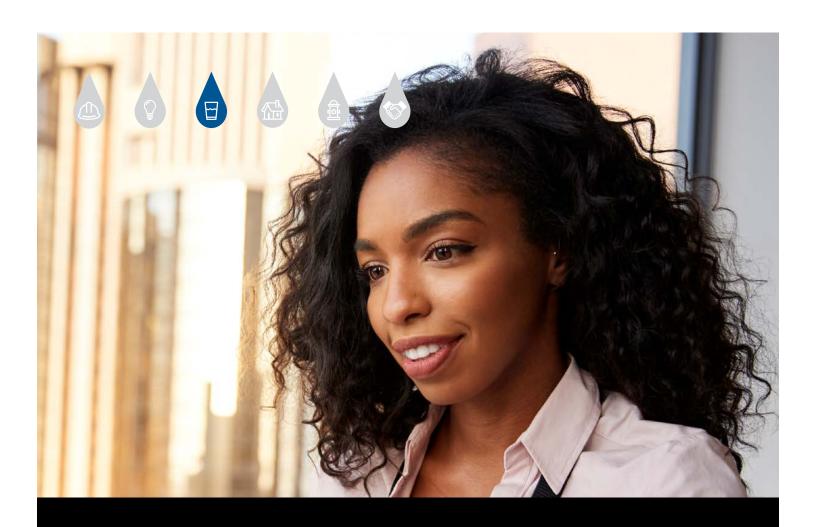
National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa $(888)\ 237-1333$.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

TORO | PWS ID: 2710021

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

June Chule

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

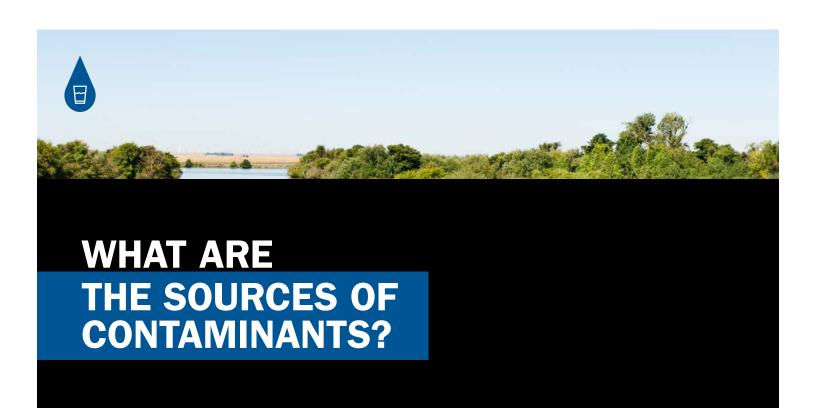
ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.



Toro is served entirely by groundwater sources. The water supply is distributed for residential use. The treatment technologies include coagulation and filtration for arsenic removal, pH adjustment for corrosion control, and disinfection for bacteriological quality.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources for the California American Water - Toro water system was completed in February 2003. The sources that are considered to be vulnerable include drinking water treatment plants and water supply wells.

A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA. You may request a summary of the assessment be sent to you by contacting Dr. Jack Wang, Water Quality and Environmental Compliance Director, at (831) 646-3269.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

RADON

Radon is a radioactive gas and known human carcinogen that you cannot see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water while showering, washing dishes, or doing other household activities. Radon entering the home through tap water usually produces minor amounts of radon in indoor air compared to radon entering the home through soil.

Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air inside. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is four picocuries per liter of air (pCi/L) or higher. There are simple, relatively inexpensive ways to fix a radon problem. For additional information, call your state radon program at (800) 745-7236, the USEPA Safe Drinking Water Hotline at (800) 426-4791, or the National Safety Council's Radon Hotline at (800) SOS-RADON.

LEAD

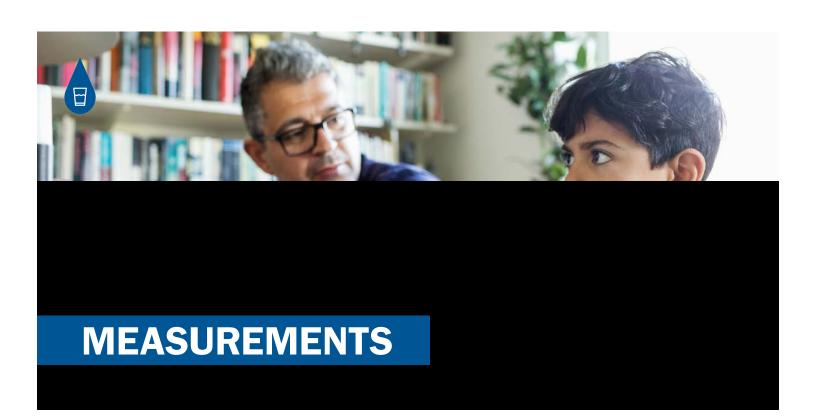
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

PFOA/PFOS Monitoring

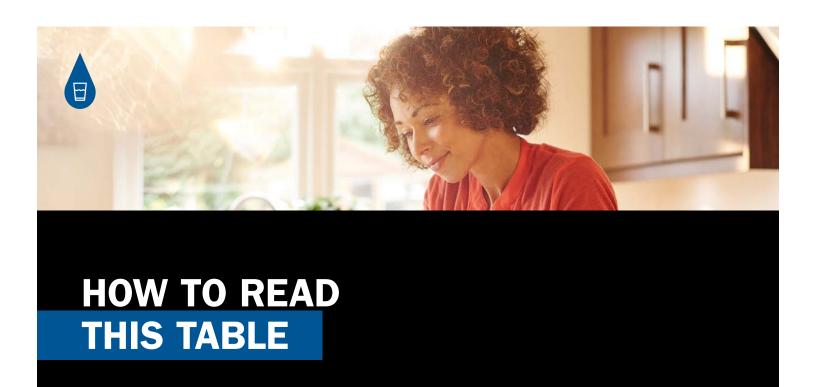
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source waters of Toro water system in 2019. PFOA and PFOS were not detected in the water above the detection limits for the testing.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

Water Quality Results: Toro

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (units)	Year Sampled*	MCL	PHG (MCLG)	Average Amount Detected	Range of Detections		Violation	Typical Source
Substance (units)					Low	High	Violation	rypical Gource
Arsenic (ppb) ¹	2019	10	0.004	6.1	4	8	No	Erosion of natural deposits
Chromium VI (Hexavalent Chromium) (ppb)	2016	NA	0.02	0.51	ND	1.01	No	Erosion of natural deposits
Fluoride (naturally occurring) (ppm) ²	2019	2.0	1	0.29	0.27	0.31	No	Erosion of natural deposits
Nitrate as N (ppm)	2019	10	10	2.26	2.22	2.30	No	Erosion of natural deposits
Selenium (ppb)	2019	50	30	6.5	6	7	No	Erosion of natural deposits

Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Measured on the Water within the Distribution System)

Substance (units)	Year	MCL/ MRDL	MCLG	Average Amount	Range of Detections		Violation	Typical Source
Substance (units)	Sampled	WICE/ WINDE	WICEG	Detected	Low	High	Violation	турісаі Зойгсе
Total Trihalomethanes (TTHM) (ppb) ³	2019	80	NA ³	16.1	6.4	25.7	No	By-product of drinking water chlorination
Haloacetic Acids (ppb) ³	2019	60	NA ³	4.9	1.5	8.2	No	By-product of drinking water chlorination
Chlorine (ppm)	2019	4.0 (as Cl ₂)	4.0 (as Cl ₂)	1.64	0.91	2.4	No	Drinking water disinfectant added for treatment

Tap Water Samples: Lead and Copper Results (Measured on Water in the Distribution System)

Substance (units)	Year Sampled*	Action Level	PHG	Number of Samples	90 th Percentile	Number of Samples Above Action Level	Violation	Typical Source
Copper (ppm)	2019	1.3	0.3	10	0.133	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits
Lead (ppb)	2019	15	0.2	10	0	0	No	Internal corrosion of household plumbing system; Erosion of natural deposits

Secondary Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

There are no PHGs, MCLGs, or mandatory standard health effects language for these substances. The secondary MCLs are set on the basis of aesthetic concerns.

Substance (units)	Year	SMCL	Average Amount	Range of	Detections	Typical Source	
Substance (units)	Sampled*	SMCL	Detected	Low	High	Typical Source	
Chloride (ppm)	2019	500	444	393	527	Leaching from natural deposits	
Odor (Units)	2019	3	1	1	1	Naturally-occurring organic materials	
Iron (ppb) ⁴	2019	300	90	ND	1170	Leaching from natural deposits	
Specific Conductance (μmhos/cm)	2019	1600	1856	1691	2266	Substances that form ions when in water	
Sulfate (ppm)	2019	500	44	41	48	Leaching from natural deposits	
Total Dissolved Solids (ppm)	2019	1000	930	788	1118	Leaching from natural deposits	

Additional Water Quality Parameters of Interest (Measured on the Water Leaving the Treatment Facility and/or the Source)

This table shows average levels of additional water quality parameters, which are often of interest to consumers. Values shown here are averages of operating data through 2019. Values may vary from day to day. There are no health-based limits for these substances in drinking water.

Cubatanas (unita)	Very Completit	Average Amount	Range of Detections			
Substance (units)	Year Sampled*	Detected	Low	High		
Alkalinity as CaCO ₃ (ppm)	2019	118	97	133		
Calcium (ppm)	2019	39	28	52		
Magnesium (ppm)	2019	41	33	52		
pH (pH Units)	2019	7.40	7.10	7.84		
Sodium (ppm)	2019	232	214	251		
Total Hardness as CaCO ₃ (ppm)	2019	265	204	345		
Total Hardness as Grains per Gallon (gpg)	2019	16	12	20		
Boron (ppm)	2019	0.11	0.10	0.12		
Strontium (ppb)	2019	350	300	400		
Vanadium (ppb)	2019	7	6	8		

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

¹ Arsenic - California American Water's groundwater arsenic removal facility continues to produce water with arsenic levels below the current federal and state standards. While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

² Fluoride - California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

³ TTHM/HAA5 - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg/L); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs.

⁴ Iron - one detection; potential lab/sampling error

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a DDW and the consumer. Not an enforceable standard.

contaminant, which, if exceeded, requires notification to

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

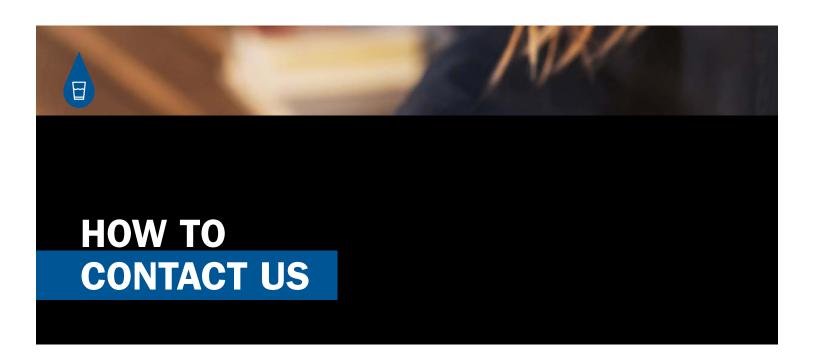
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board

TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

2019 Annual Water Quality Report | TORO

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

Toro PWS ID: CA2710021

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich SvindlandPresident
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

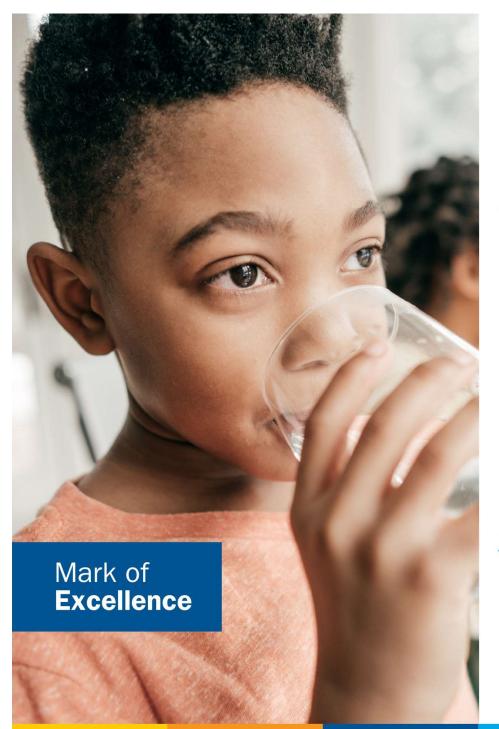
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

June Chulu

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

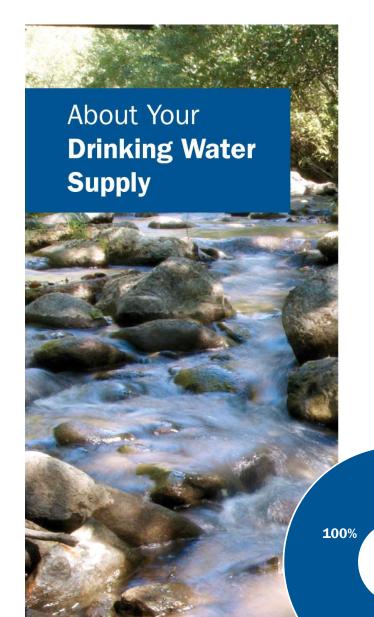
A message from our President	2
What is a Consumer Confidence Report	3
Mark of Excellence	4
About Your Drinking Water Supply	5
What are the Sources of Contaminants?	6
Protecting Your Drinking Water Supply	7
About Lead	8
Important Information About Your Water	9-10
Water Quality Results	11
Definitions of Terms Used in Document	12
Water Quality Results: Detailed Charts	13-15
About Us	16
Contact Us	17

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

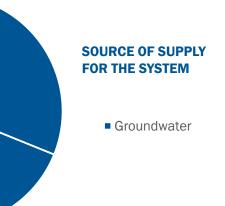
EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.


Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

WHERE YOUR WATER COMES FROM

Toro is served entirely by groundwater sources from wells located in the Monterey Subbasin. Drinking water treatment technologies used in your water system include arsenic, iron, and manganese removal and disinfection for bacteriological quality. The water supply is distributed for residential and commercial use.

An assessment of the drinking water sources for the California American Water – Toro water system was completed in 2003. The sources that are considered vulnerable to drinking water treatment plants and water supply wells. A copy of the completed assessment may be viewed at California American Water, 511 Forest Lodge Road, Suite 100, Pacific Grove, CA.

QUICK FACTS ABOUT THE TORO SYSTEM

Water source:

Groundwater wells

Water treatment:

The arsenic, iron, and manganese in the source water are removed in the treatment plant. The water is then disinfected with chlorine before distributed to customers for consumption.

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

CONTA	MINANTO THAT MAT BE I RESERVE IN SOSKIEL WATER INSESSE.
Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

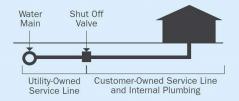
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Dr. Jack Wang at 831-646-3269.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

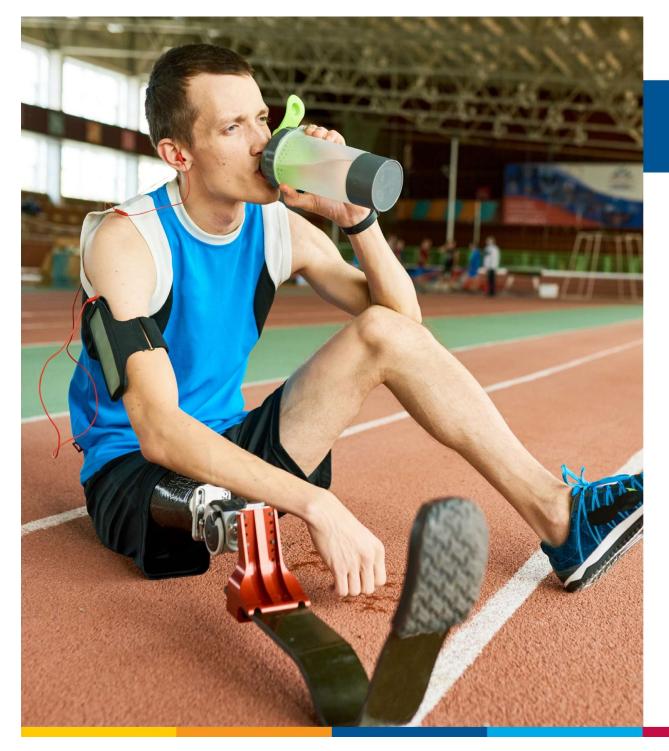
Important Information About **Drinking Water**

ARSENIC

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich

Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

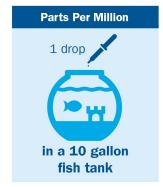
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

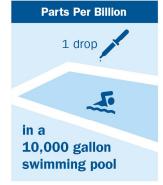
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

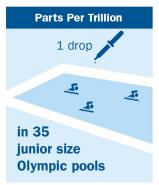
RAA: Running Annual Average

Secondary Maximum Contaminant Level (**SMCL**): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

12

Water Quality Results

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

LEAD AND COPPER MONITORING PROGRAM - At least 10 tap water samples collected at customers' taps every three years									
Substance (with units)	Vear Sampled I '		MCLG	Action Level 90 th Percentile		No. of Homes Homes Above Sampled Action Level		Typical Source	
Lead (ppb)	2019	Yes	0.2	15	0	10	0	Corrosion of household plumbing systems.	
Copper (ppm)	2019	Yes	0.3	1.3	0.133	10	0	Corrosion of household plumbing systems.	

DISINFECTION BYPRODUCTS - Collected in the Distribution System										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected	Typical Source			
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	10.3	7.1 to 10.3	By-product of drinking water disinfection.			
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	3.2	1.7 to 3.2	By-product of drinking water disinfection.			

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

	DISINFECTANTS - Collected in the Distribution System									
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Minimum Chlorine Residual			Typical Source		
Distribution System Chlorine Residual (ppm) ¹	2020	Yes	4	4	0.99	1.57	0.99 to 2.17	Water additive used to control microbes.		

1 - Data represents the average of chlorine residuals measured throughout our distribution system.

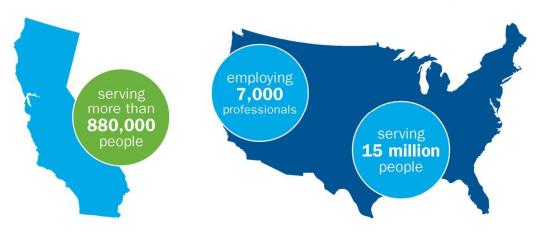
PRIMARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source									
Substance (with units)	Year Sampled	Compliance Achieved	MCL	PHG or MCLG	Average Compliance Result	Range Detected	Typical Source		
Arsenic (ppb) ¹	2020	Yes	10	0.004	8.2	4 to 21	Erosion of natural deposits		
Chromium VI (Hexavalent Chromium) (ppb)	2016	Yes	NA	0.02	0.51	ND to 1.01	Erosion of natural deposits		
Fluoride (naturally occurring) (ppm) ²	2019	Yes	2.0	1	0.29	0.27 to 0.31	Erosion of natural deposits		
Nitrate as N (ppm)	2020	Yes	10	10	1.98	1.92 to 2.04	Erosion of natural deposits		
Selenium (ppb)	2019	Yes	50	30	6.5	6 to 7	Erosion of natural deposits		

^{1 -} Arsenic: California American Water's ground water arsenic removal facility continues to produce water with arsenic levels below the current federal and state standards. While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

^{2 -} Fluoride: California American Water does not add fluoride to the water in the Monterey Peninsula area. Fluoride occurs naturally in the groundwater we serve.

SECONDA	SECONDARY REGULATED SUBSTANCES - Collected at the Treatment Plant Effluent and/or at the Source											
Substance (with units)	Year Sampled	Compliance Achieved ¹	SMCL	Average Compliance Result	Range Detected ²	Typical Source						
Chloride (ppm)	2019	Yes	500	444	393 to 527	Leaching from natural deposits						
Odor (Units)	2019	Yes	3	1	NA	Naturally-occurring organic materials						
Iron (ppb)	2020	Yes	300	79	ND to 930	Leaching from natural deposits						
Specific Conductance (mmhos/cm)	2020	Yes	1600	1733	NA	Substances that form ions when in water						
Sulfate (ppm)	2019	Yes	500	44	41 to 48	Leaching from natural deposits						
Total Dissolved Solids (ppm)	2020	Yes	1000	894	NA	Leaching from natural deposits						

^{1 –} Yes: There are no PHGs, MCLGs, or mandatory standard health effects language for Secondary Substances because secondary MCLs are set based on aesthetic concerns 2 – NA: Only one detection


OTHER SUBSTANC	ES OF INTEREST - Collected at the	Treatment Plant Effluent	and/or at the Source			
Substance (with units)	Year Sampled	Average	Range Detected			
			Low	High		
Alkalinity as CaCO ₃ (ppm)	2020	123	104	227		
Calcium (ppm)	2020	42	42	42		
Magnesium (ppm)	2019	41	33	52		
pH (pH Units)	2020	7.41	7.08	7.82		
Sodium (ppm)	2019	232	214	251		
Total Hardness as CaCO ₃ (ppm)	2019	265	204	345		
Total Hardness as Grains per Gallon (gpg)	2019	16	12	20		
Boron (ppm)	2019	0.11	0.10	0.12		
Strontium (ppb)	2019	350	300	400		
Vanadium (ppb)	2019	7	6	8		

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

County of Monterey Health Department:

https://www.co.monterey.ca.us/government/departments-a-h/health

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wga.org

National Library of Medicine/National Institute of Health:

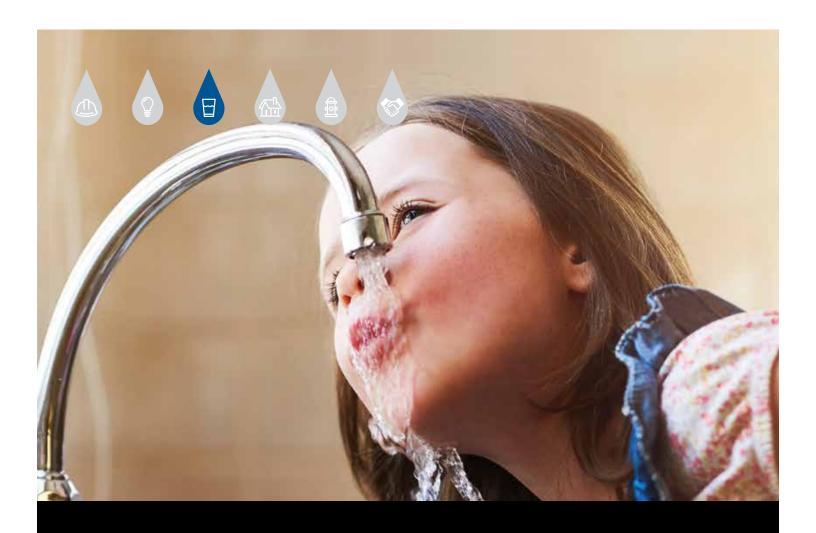
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

ANTELOPE | PWS ID: 3410031

WE KEEP LIFE FLOWING™

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

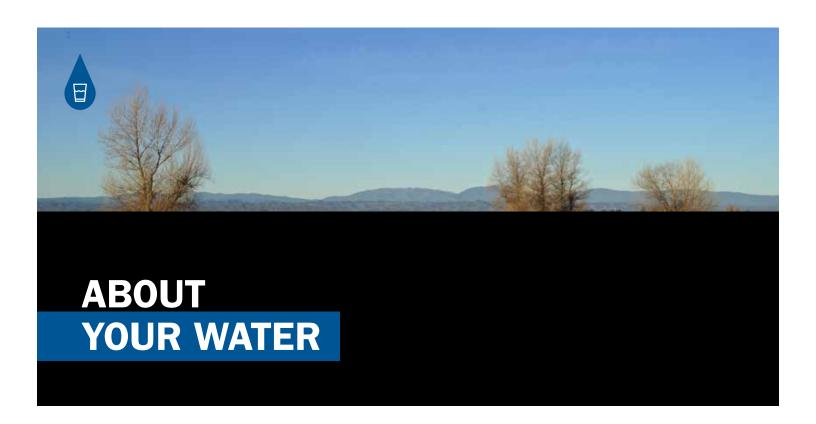
Sincerely,

RICHARD SVINDLAND

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

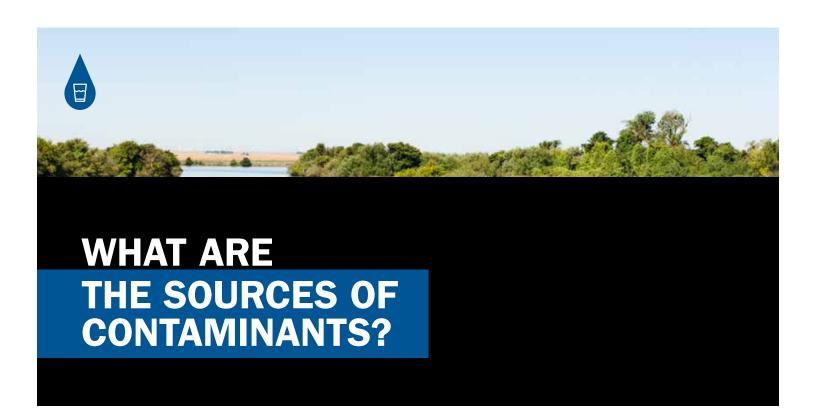
ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)


California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

The Antelope water system is served by deep wells that pump groundwater from aquifers here in the Sacramento Valley. All of these wells are located within the geographic boundaries of our Antelope service area. The water is chlorinated to ensure it meets bacteriological quality standards and distributed for residential and commercial use.


In 2018, California American Water supplemented the Antelope system with surface water purchased from the Sacramento Suburban Water District. The Sacramento Suburban Water District uses various surface water treatment technologies including coagulation, sedimentation, filtration and disinfection.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources in the Antelope system was completed in February 2003. Although not associated with any detected contaminants, the sources are considered most vulnerable to the following: sewer collection systems, grazing, low-density septic systems, agricultural and irrigation wells, automobile gas stations/repair shops/body shops, underground storage tanks (confirmed leaking tanks), photo processing/printing, and dry cleaners.

An assessment of the surface water source for the Sacramento Suburban Water District was conducted in 2001 by the San Juan Water District. The source is considered most vulnerable to potential contamination from Folsom Lake State Recreation Area facilities, high-density housing and associated activities such as sewer and septic systems, pesticide and herbicide application, as well as illegal activities and dumping.

A copy of the completed assessment may be viewed at: California American Water, 4701 Beloit Drive, Sacramento, CA 95838.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS,

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,


which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

FLUORIDE

Fluoride is a naturally occurring substance. It can be present in drinking water from two sources:

- **1. By nature** when groundwater comes into contact with fluoride-containing minerals naturally present in the earth; or
- 2. By a water purveyor through addition of fluoride to the water they are providing in the distribution system.

In the Antelope system, all fluoride in the water is from naturally occurring minerals and the concentrations are well below the limits for contaminants in drinking water set by the USEPA and State Water Resources Control Board, Division of Drinking Water.

UNREGULATED CONTAMINANT MONITORING RULE (UCMR)

The USEPA created the Unregulated Contaminants Monitoring Rule (UCMR) to assist them in determining the occurrence of unregulated contaminants in drinking water and whether new regulations are warranted. The first Unregulated Contaminants Monitoring Rule (UCMR1) testing was completed in 2003 for a list of contaminants specified by the USEPA. Unregulated contaminants are those for which the USEPA has not established drinking water standards. UCMR2 testing was conducted between

November 2008 and August 2009, and UCMR3 assessment monitoring was conducted between January 2013 and December 2016. The fourth cycle (UCMR4) began in January 2018 and is in various stages of implementation through December 2020. The results from the UCMR monitoring are reported directly to the USEPA. The results of this monitoring are incorporated in the data tables in this report as appropriate. For more information, contact our Customer Service Center at (888) 237-1333.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking.

If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

TESTING LEAD IN PUBLIC SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water system to test lead levels, by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water serves 10 public school sites in the Center Unified School District and Dry Creek Elementary School District in the Antelope water system and has completed the testing at all sites. California law makes school districts responsible for informing parents of lead testing results for their schools. Please contact your child's school or school district to get detailed results on lead testing at your child's school

CRYPTOSPORIDIUM

Cryptosporidium is a microbial pathogen found in surface waters throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100% removal. Monitoring indicates the presence of these organisms in source water and/or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can

overcome the disease within a few weeks. However, immuno-compromised people are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their health care provider regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. You can obtain more information on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants by calling the USEPA's Safe Drinking Water Hotline (800) 426-4791.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- **MCLG** is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- 7 A No under Violation indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results

Regulated Substances

					ANTELOPE		SSI	WD		
Substance (Units)	Year Sampled	MCL	PHG (MCLG)	Average Amount	Rai Low	nge High	Average Amount Detected	Range	Violation	Major Sources in Drinking Water
Aluminum (ppm)	2018	1	0.6	ND	ND	0.1	N/A	N/A		Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (ppb)	2018	10	0.004	ND	ND	3.0	ND	ND		Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes
Fluoride (ppm) (naturally occurring)	2018	2	1	0.2	ND	0.7	ND	ND		Erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate (as nitrogen) (ppm)	2018	10	10	0.8	ND	1.3	ND	ND		Runoff and leaching from fertilizer use; Leaching from septic tanks and sewage; Erosion of natural deposits
Control of Disinfection By-Product Precursors (TOC) (ppm)	2018	TT=2 ¹	N/A	NA ²	N	IA .	1.1	0.9 - 1.6	No	Various natural and man-made sources

¹Treatment requirement if average TOC>2

Distribution System Monitoring

					ANTELOPE		SSV	WD		
Substance (Units)	Year Sampled	MCL	PHG (MCLG)	Average	Ra	nge	Average Amount		Violation	Major Sources in Drinking Water
	Amount Detected Low High Detected Range	Range								
Chlorine (ppm)	2018	MRDL=4.0	MRDLG=4.0	0.7	0.2	2.2	0.7	0.4 - 0.9	No	Treatment chemical used to disinfect drinking water
Haloacetic Acids (ppb) ³	2018	60	N/A	15	ND	24	29	17 - 31	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb) 3	2018	80	N/A	20	ND	32	48	32 - 54	No	By-product of drinking water disinfection
Total Coliform Bacteria, (highest percentage of positive samples collected in any one month)		Highest Percentage Allowed - 5%	(0)		0%		2.:	32%	No	Naturally present in the environment

³ Compliance is based on the Locational Running Annual Average. The highest level reported in the range is the result of an individual sample. The "Average Amount Detected" is the Highest Running Annual Average.

Secondary Substances

Secondary Substances				ANTELOPE			SSWD		
Substance (Units)	Year Sampled	SMCL ⁴	Average Amount Detected	Ra Low	nge High	Average Amount Detected	Range	Violation	Major Sources in Drinking Water
Aluminum (ppb)	2016, 2018	200	ND	ND	96	ND	NA	No	Erosion of natural deposits; residue from some
Chloride (ppm)	2016, 2018	500	38	14	92	2.8	2.8	No	Runoff/leaching from natural deposits; Seawater
Copper (ppm)	2016, 2018	1.0	ND	ND	0.08	ND	NA	No	Erosion of natural deposits; leaching from wood
Iron (ppb)	2016, 2018	300	602	ND	4200	ND	NA	No	Leaching from natural deposits; Industrial wastes
Manganese (ppb)	2016, 2018	50	ND	ND	56	ND	NA	No	Leaching from natural deposits
Specific Conductance (µmhos/cm)	2016, 2018	1600	327	220	460	81	68 - 100	No	Substances that form ions when in water; Seawater
Sulfate (ppm)	2016, 2018	500	4.2	0.64	8.6	7.5	7.5	No	Runoff/leaching from natural deposits; Industrial
Total Dissolved Solids (ppm)	2016, 2018	1000	236	190	310	39	39	No	Runoff/leaching from natural deposits
Turbidity (NTU)	2016, 2018	5	0.35	ND	0.78	0.023	0.017 - 0.049	No	Soil runoff
Boron (ppm) ⁵	2018	1 ⁶	0.24	ND	0.47	N/A	N/A	No	Soil runoff

⁴ Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. These contaminants are not considered to present a risk to human health at the SMCL.

Turbidity - A Measure of the Clarity of the Water (SSWD)

		,	()				
	Substance (Units)	Year Sampled	MCL	PHG (MCLG)	Highest Single Measurement	Violation	Typical Source
	Turbidity (NTU)	2018	TT = 1.0 NTU	NA.	0.049	No	Soil runoff
		2018	TT = percentage of samples < 0.3 NTU	INA	100.0%	NO	Soil fullott

Lead and Copper (tap water samples from Antelope distribution system only)

Substance (Units)	Year Sampled	Action Level	PHG (MCLG)	Number of Samples	Amount Detected (90th Percentile)	Homes Above Action Level	Violation	Major Sources In Drinking Water
Copper (ppm)	2016	1.3	0.3	33	0.279	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2016	15	0.2	33	2	1	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Discharges from industrial manufacturers

²Only surface water sources must comply with PDWS for Control of Disinfection By-Product Precursors and turbidity.

Sased on studies in laboratory animals, the babies of some pregnant women who drink water containing boron in excess of the Notification Level may have an increased risk of developmental effects.

⁶ Notification Level, not a secondary MCL

Unregulated Substances (Measured on the Water Leaving the Treatment Facility or within the Distribution System)

			ANTELOPE		S	SWD			
Substance	Year Sampled	Average Amount	Ran	ge	Average Amount Detected	Ra	nge	Potential Sources in Drinking Water	
(units)		Detected	Low	High	Average Amount Detected	Low	High		
Chlorate (ppb)	2013	114	ND	570	ND			Oxidant used in pyrotechnics and possible by-product of water treatment	
Hexavalent Chromium (ppb)	2013	4.5	1.7	9.8	0.08	0.07	0.09	Naturally-occurring metal	
Strontium (ppb)	2013, 2015	217	176	328	59.8	52	64	Naturally-occurring metal	
Vanadium (ppb)	2013	18	14	25	0.67	0.47	1.0	Naturally-occurring metal	

Additional Water Quality Parameters of Interest

This table shows average levels of additional water quality parameters that are often of interest to consumers. The averages shown are calculated from the levels detected at each source used to supply water is 2018. Values may vary from day-to-day. There are no health-based limits for these substance in drinking water.

		ANTE	LOPE		SSWD		
Substance (Units)	Year Sampled	Average Amount Detected	Ran	{e	Average Amount Detected	Range	
		Average Amount Detected	Low	High	Average Amount Detected	range	
Alkalinity as CaCO3 (ppm)	2018	101	82	130	14	NA	
Calcium (ppm)	2018	19	14	24	5.4	NA	
Magnesium (ppm)	2018	12	8.9	15	1.5	NA	
pH	2018	7.3	7.2	7.7	N/A	N/A	
Silica (ppm)	2018	81	77	85	N/A	N/A	
Sodium (ppm)	2018	34	18	49	2.3	NA	
Total Hardness as CaCO3 (ppm)	2018	95	75	120	20	NA	
Total Hardness as CaCO3 (grains/gallon)	2018	5.6	4.4	7.0	1.2	NA	

Lotal Hardness as CaUJS (grains/galion)

Hardness' is the sum of polywalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.

"Sodium" refers to the salt present in the water and is generally naturally occurring.

Action Level (AL): The concentration of a contaminant, which, Notification Level (NL): The concentration of a contaminant, if exceeded, triggers treatment or other requirements, that a which, if exceeded, requires notification to DDW and the water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available ND: Not detected

NR: Not required

Nephelometric Turbidity Units (NTU): Measurement of the

clarity, or turbidity, of the water.

consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

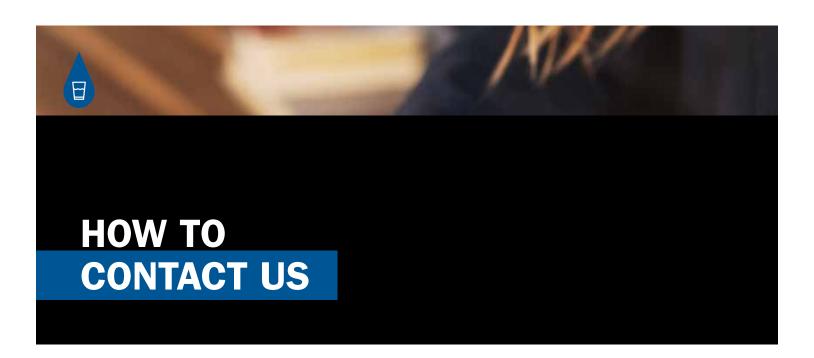
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board

www.swrcb.ca.gov

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

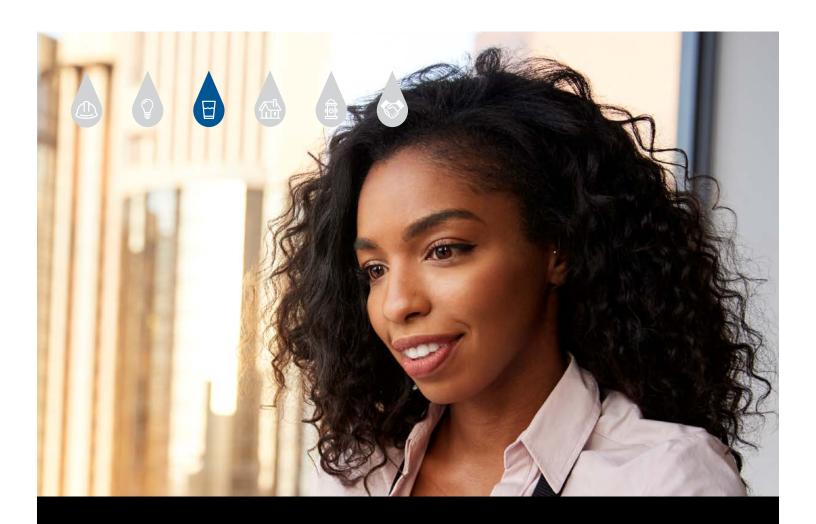
National Library of Medicine/National Institute of Health

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

ANTELOPE | PWS ID: 3410031

WE KEEP LIFE FLOWING™

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

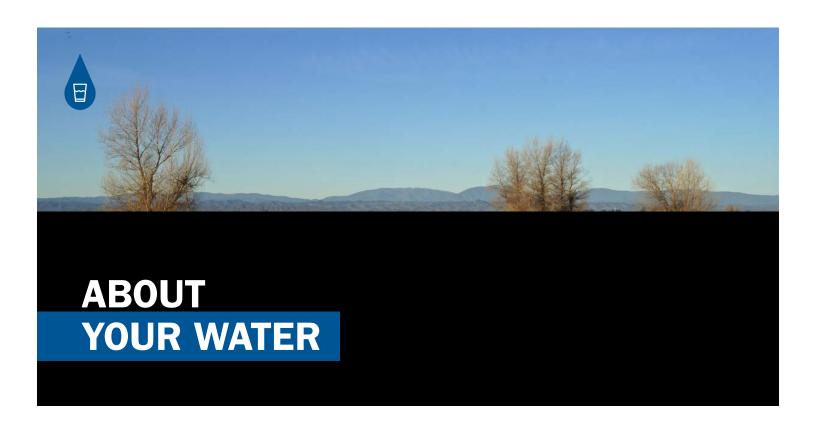
June Chule

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.



WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

The Antelope water system is served by deep wells that pump groundwater from aquifers here in the Sacramento Valley. All of these wells are located within the geographic boundaries of our Antelope service area. The water is chlorinated for bacteriological quality and distributed for residential and commercial use.

In 2019, California American Water supplemented the Antelope system with surface water purchased from the Sacramento Suburban Water District. The Sacramento Suburban Water District uses various surface water treatment technologies including coagulation, sedimentation, filtration and disinfection.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources in the Antelope system was completed in February 2003. Although not associated with any detected contaminants, the sources are considered most vulnerable to the following: sewer collection systems, grazing, low-density septic systems, agricultural and irrigation wells, automobile gas stations/repair shops/body shops, underground storage tanks (confirmed leaking tanks), photo processing/printing, and dry cleaners.

An assessment of the surface water source for the Sacramento Suburban Water District was conducted in 2001 by the San Juan Water District. The source is considered most vulnerable to potential contamination from Folsom Lake State Recreation Area facilities, high-density housing and associated activities such as sewer and septic systems, pesticide and herbicide application, as well as illegal activities and dumping.

A copy of the completed assessment may be viewed at: California American Water, 4701 Beloit Drive, Sacramento, CA 95838.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

FLUORIDE

Fluoride is a naturally occurring substance. It can be present in drinking water from two sources:

- **1. By nature** when groundwater comes into contact with fluoride-containing minerals naturally present in the earth; or
- 2. By a water purveyor through addition of fluoride to the water they are providing in the distribution system.

In the Antelope system, all fluoride in the water is from naturally occurring minerals and the concentrations are well below the limits for contaminants in drinking water set by the USEPA and State Water Resources Control Board, Division of Drinking Water.

UNREGULATED CONTAMINANT MONITORING RULE (UCMR)

The USEPA created the Unregulated Contaminants Monitoring Rule (UCMR) to assist them in determining the occurrence of unregulated contaminants in drinking water and whether new regulations are warranted. The first Unregulated Contaminants Monitoring Rule (UCMR1) testing was completed in 2003 for a list of contaminants specified by the USEPA. Unregulated contaminants are those for which the USEPA has not established drinking water standards. UCMR2 testing was conducted between

November 2008 and August 2009, and UCMR3 assessment monitoring was conducted between January 2013 and December 2016. The fourth cycle (UCMR4) began in January 2018 and is in various stages of implementation through December 2020. The results from the UCMR monitoring are reported directly to the USEPA. The results of this monitoring are incorporated in the data tables in this report as appropriate. For more information, contact our Customer Service Center at (888) 237-1333.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

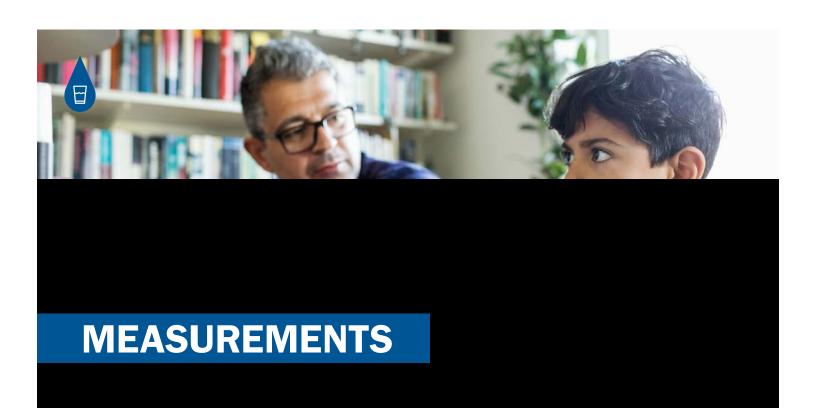
If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

CRYPTOSPORIDIUM

Cryptosporidium is a microbial pathogen found in surface waters throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100% removal. Monitoring indicates the presence of these organisms in source water and/or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their health care provider regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. You can obtain more information on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants by calling the USEPA's Safe Drinking Water Hotline (800) 426-4791.

PFOA/PFOS Monitoring

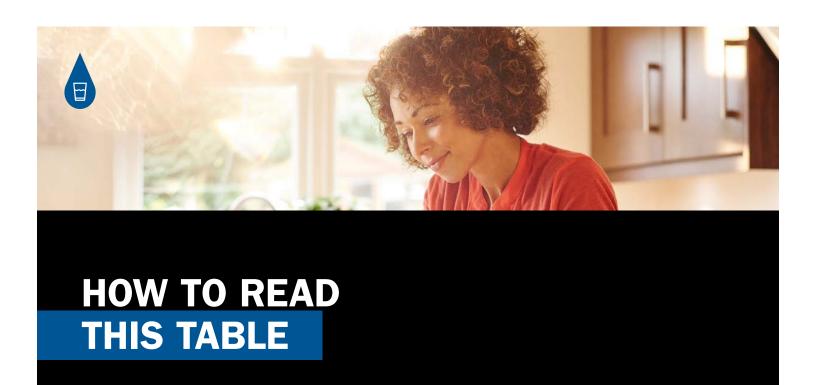
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source and treatment facility effluent water in Antelope water system in 2019. PFOA and PFOS were not detected in the water above the detection limits for the testing.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

2019 Annual Water Quality Results | Antelope

Regulated Substances

	ANTELOPE				SSWD						
Substance (Units)	Year Sampled *	MCL	PHG (MCLG)	Average	Rai	nge	Average Amount	Rai	nge	Violation	Major Sources in Drinking Water
				Amount Detected	Low	High	Detected	Low	High		
Aluminum (ppm)	2018 - 2019	1	0.6	ND	ND	0.1	N/A	N,	/A	No	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (ppb)	2018 - 2019	10	0.004	ND	ND	3.4	ND	N	Α	No	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes
Barium (ppm)	2018 - 2019	1	2	ND	ND	0.1	ND	N	NA		Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium, Total (ppb)	2018 - 2019	50	(100)	ND	ND	17	N/A	N,	/A		Erosion of natural deposits; discharge from steel and pulp mills and chrome plating
Fluoride (ppm) (naturally occurring)	2018 - 2019	2	1	0.1	ND	0.7	ND	N	A	No	Erosion of natural deposits; discharge from fertilizer and aluminum factories
Nickel (ppb)	2018 - 2019	100	12	ND	ND	28	ND	N	NA		Erosion of natural deposits; discharge from metal factories
Nitrate (as nitrogen) (ppm)	2019	10	10	1.1	0.51	2.1	ND	NA		No	Runoff and leaching from fertilizer use; Leaching from septic tanks and sewage; Erosion of natural deposits
Control of Disinfection By-Product Precursors (TOC) (ppm)	2019	π=2 1	N/A	NA ²	N	IA	1.1	0.8 1.7		No	Various natural and man-made sources

³ Treatment requirement if average TOC>2. Removal ratio greater than or equal to 1.0 indicates that TOC removal requirements were met or exceeded.

Distribution System Monitoring: Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors (Antelope service area)

					ANTELOPE			SSWD			
Substance (Units) Year Sample	Year Sampled	MCL/MRDL	MRDLG (MCLG)	Average Amount	Rai	nge	Average Amount	Rai	nge	Violation	Major Sources in Drinking Water
				Detected	Low	High	Detected	Low	High		
Chlorine (ppm)	2019	MRDL=4.0	0.4	0.7	0.2	1.4	0.7	0.4	0.9	No	Treatment chemical used to disinfect drinking water
Haloacetic Acids [HAA5] (ppb) ³	2019	60	N/A	18	ND	25	27	20	36	No	By-product of drinking water disinfection
Total Trihalomethanes [TTHM] (ppb) ³	2019	80	N/A	25	ND	38	47	37	60	No	By-product of drinking water disinfection

³TTHM/HAA_S - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: bromodichloromethane (zero); bromoform (zero); chloroform (o.o7mg/L); dibromochloromethane (o.o6 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (o.o2mg/L). Monochloroacetic Acid (o.o7mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs. The "Average Amount Detected" is the Highest Running Annual Average.

Secondary Substances

Secondary Substances				ANTELOPE			SSWD			
Substance (Units)	Year Sampled	SMCL 4 (NL)	Average Amount	Rai	nge	Average Amount	Rai	nge	Violation	Major Sources in Drinking Water
			Detected	Low	High	Detected	Low	High		
Aluminum (ppb)	2018 - 2019	200	28	ND	130	ND	N	IA	No	Erosion of natural deposits; residue from some surface water treatment processes
Chloride (ppm)	2018 - 2019	500	35	13	92	1.8	N	IA	No	Runoff/leaching from natural deposits; Seawater influence
Copper (ppm)	2018 - 2019	1	ND	ND	0.11	ND	N	A	No	Erosion of natural deposits; leaching from wood preservatives
Iron (ppb)	2018 - 2019	300	146	ND	650	ND	N	NA		Leaching from natural deposits; Industrial wastes
Specific Conductance (µmhos/cm)	2018 - 2019	1600	317	220	480	65	50	98	No	Substances that form ions when in water; Seawater influence
Sulfate (ppm)	2018 - 2019	500	4.7	0.64	11	3.8	N	IA	No	Runoff/leaching from natural deposits; Industrial wastes
Total Dissolved Solids (ppm)	2018 - 2019	1000	236	190	310	30	N	A	No	Runoff/leaching from natural deposits
Turbidity (NTU)	2018 - 2019	5	0.72	ND	4.6	0.02	0.02	0.04	No	Soil runoff
Boron (ppm) ⁵	2018 - 2019	(1)	0.11	ND	0.47	N/A	N/A		No	Soil runoff
Vanadium (ppb) ⁶	2018 - 2019	(50)	23.0	10	33.0	N/A	N/A		No	Naturally-occurring metal

⁴ Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. These contaminants are not considered to present a risk to human health at the SMCL.

Turbidity - A Measure of the Clarity of the Water (SSWD)

Substance (Units)	Year Sampled	MCL	PHG (MCLG)	Highest Single Measurement	Violation	Major Sources in Drinking Water
Turbidity (NTU)	2019	TT = 1.0 NTU	NA	0.041	Ne	Soil runoff
		TT = percentage of samples <0.3 NTU	NA	100.0%	NO	

Lead and Copper (tap water samples from Antelope distribution system only)

Substance (Units)	Year Sampled	Action Level	PHG (MCLG)	Number of Samples	Amount Detected (90th Percentile)	Homes Above Action Level	Violation	Major Sources in Drinking Water
Copper (ppm)	2019	1.3	0.3	30	0.146	0		Internal corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2019	15	0.2	30	1	0		Internal corrosion of household plumbing systems; Erosion of natural deposits; Discharges from industrial manufacturers

² Only surface water sources must comply with PDWS for Control of Disinfection By-Product Precursors and turbidity.

⁵ Based on studies in laboratory animals, the babies of some pregnant women who drink water containing boron in excess of the Notification Level may have an increased risk of developmental effects.

⁶ The babies of some pregnant women who drink water containing vanadium in excess of the Notification Level may have an increased risk of developmental effects, based on studies in laboratory animals.

Unregulated Substances (Measured on the Water Leaving the Treatment Facility or within the Distribution System)

Substance	Year Sampled	PHG (NL)	ANTELOPE			SSWD			
(units)			Average Amount Detected	Range		Average Amount Detected	Range		Notes
(ama)			Average Amount Detected	Low	High	Average Amount Detected	Low	High	
Chlorate (ppb)	2013	N/A	114	ND	570	ND	NA		Oxidant used in pyrotechnics and possible by-product of water treatment
Hexavalent Chromium (ppb)	2013	N/A	4.5	1.7	9.8	0.08	0.07 0.09		Naturally-occurring metal
Strontium (ppb)	2013, 2015	N/A	217	176	328	59.8	52	64	Naturally-occurring metal
Vanadium (ppb)	2013	(50)	18.4	14	25	0.67	0.47 1.0		Naturally-occurring metal
Manganese (ppb)	2019	(500)	3.3	ND	9.4	1.05	ND 3.2		Leaching from natural deposits
Germanium (ppb)	2019	N/A	ND	ND	0.64	ND	NA		Leaching from natural deposits
o-Toluidine (ppb)	2019	N/A	ND	ND	0.037	ND	NA		
HAA5 (ppb)	2019	MCL=60	9.8	1.20	17.00	21.1	19.0	31.6	By-product of drinking water disinfection
HAA6Br (ppb) 7	2019	N/A	0.44	ND	1.40	ND	NA		By-product of drinking water disinfection
HAA9 (ppb) ⁸	2019	N/A	10.3	1.20	18.0	24.7	15.6	32.6	By-product of drinking water disinfection

⁷HAA6Br. Bromochloroacetic acid, bromodichloroacetic acid, dibromoacetic acid, dibromochloroacetic acid, monobromoacetic acid, and tribromoacetic acid.

Additional Water Quality Parameters of Interest

This table shows average levels of additional water quality parameters that are often of interest to consumers. The averages shown are calculated from the levels detected at each source used to supply water is 2019 and in distribution system. Values may vary from day-to-day. There are no health-based limits for these substance in drinking water.

		ANT	ELOPE		SSWD		
Substance (Units)	Year Sampled	Average Amount Detected	Rai		Average Amount Detected	Range	
			Low	High			
Alkalinity as CaCO3 (ppm)	2018 - 2019	98	75	130	N/A	N/A	
Bicarbonate as CaCO3 (ppm)	2018 - 2019	98	75	130	13	NA	
Calcium (ppm)	2018 - 2019	20	12	30	3.3	NA	
Magnesium (ppm)	2018 - 2019	13	8.9	24	1.0	NA	
pH	2018 - 2019	7.3	7.2	7.7	N/A	N/A	
Silica (ppm)	2018 - 2019	81	75	86	N/A	N/A	
Sodium (ppm)	2018 - 2019	26	16	49	1.6	NA	
Total Hardness as CaCO3 (ppm)	2018 - 2019	102	66	170	12	NA	
Total Hardness as CaCO3 (grains/gallon)	2018 - 2019	5.9	3.9	9.9	0.7	NA	

[&]quot;Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

⁸ HAA9: Bromochloroacetic acid, bromodichloroacetic acid, chlorodibromoacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid.

 $[\]verb"Sodium" refers to the salt present in the water and is generally naturally occurring.$

^{*}The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

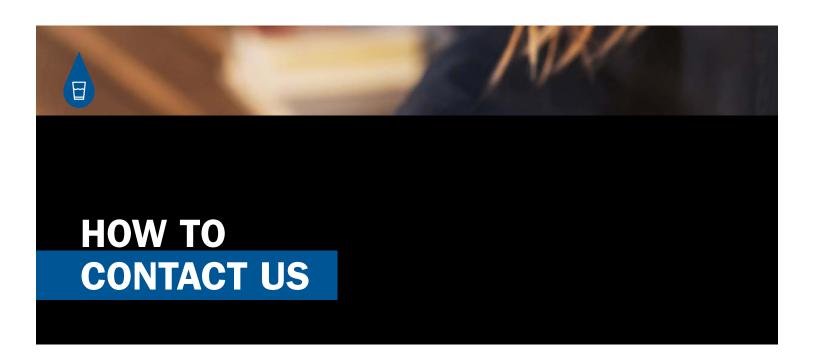
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW)

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of Health

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

ANTELOPE

PWS ID: CA3410031

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich SvindlandPresident
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

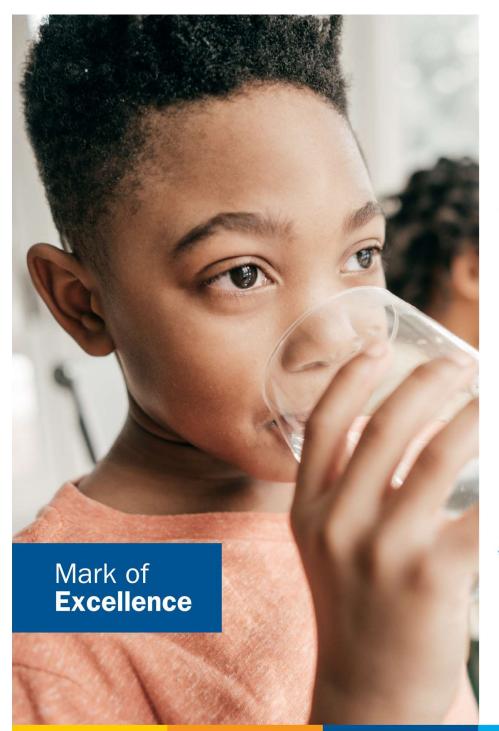
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

June Chulm

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

2
3
4
5
6
7
8
9
10
11
12-15
16
17

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.

WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

About Your Drinking Water Supply 98.7%

WHERE YOUR WATER COMES FROM

The Antelope water system is served by deep wells that pump groundwater from aquifers in the Sacramento Valley. In 2020, California American Water supplemented the Antelope system with surface water purchased from the Sacramento Suburban Water District (SSWD). The water purchased from the SSWD originates from the Folsom Lake and treated by the San Juan Water District (SJWD).

An assessment of the drinking water sources in the Antelope system was completed in February 2003. Although not associated with any detected contaminants, the sources are considered most vulnerable to the following: sewer collection systems, grazing, low-density septic systems, agricultural and irrigation wells, automobile gas stations/repair shops/body shops, underground storage tanks (confirmed leaking tanks), photo processing/printing, and dry cleaners. A copy of the completed assessment may be viewed at: California American Water, 4701 Beloit Drive, Sacramento, CA 95838

San Juan Water District conducted the evaluation of the Folsom Lake source. It was found to be most vulnerable to potential contamination from the Folsom Lake State Recreation Area facilities, high-density housing and associated activities such as sewer and septic systems and fertilizer, pesticide and herbicide application, as well as illegal activities and dumping. The source water is typically treated using conventional treatment with filtration and disinfection that is designed to remove many contaminants.

SOURCE OF SUPPLY FOR THE SYSTEM

Groundwater

1.3%

 Surface Water (Purchased from SSWD treated by SJWD)

QUICK FACTS ABOUT THE Antelope SYSTEM

Water source:

Groundwater wells; purchased surface water from SSWD (originates from the Folsom Lake and treated by the San Juan Water District)

Disinfection and other treatment:

California American Water uses various drinking water treatment technologies to treat the groundwater used in the Antelope system including strong base ion-exchange (SBA-IX) for hexavalent chromium removal and chlorination of the water for disinfection.

The surface water purchased from SSWD is treated by the San Juan Water District (SJWD) using conventional treatment with filtration and disinfection that is designed to remove many contaminants.

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

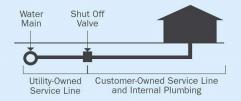
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Victoria Kunda at 916-568-4278.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

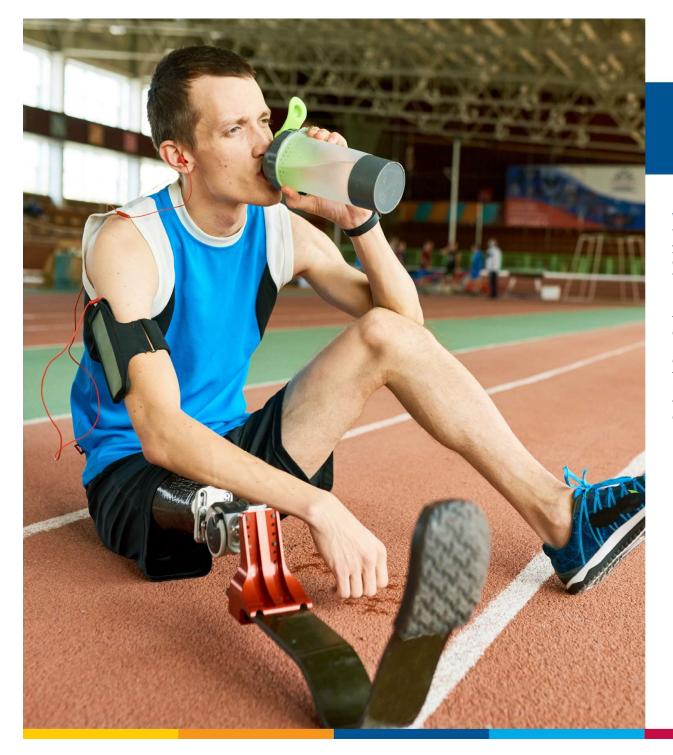
Important Information About **Drinking Water**

UNREGULATED CONTAMINANT MONITORING RULE (UCMR)

The EPA created the Unregulated Contaminants Monitoring Rule (UCMR) to assist them in determining the occurrence of unregulated contaminants in drinking water and whether new regulations are warranted. The first Unregulated Contaminants Monitoring Rule (UCMR1) testing was completed in 2003 for a list of contaminants specified by the EPA. Unregulated contaminants are those for which the EPA has not established drinking water standards. UCMR2 testing was conducted between November 2008 and August 2009, and UCMR3 assessment monitoring was conducted between January 2013 and December 2016. The fourth list of contaminants to monitor as part of the UCMR was published by the EPA in December 2016. UCMR4 testing began in 2018 and was completed in 2020. The results from the UCMR monitoring are reported directly to the EPA. The results of this monitoring are incorporated in the data tables in this report as appropriate. For more information, contact our Customer Service Center at 1-888-237-1333.

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

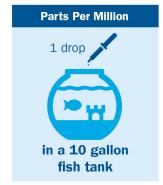
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

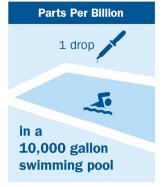
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

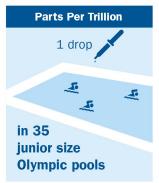
RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

11

Water Quality **Results**

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the following tables were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 30 tap water samples collected at customers' taps every 3 years											
Substance (with units)	Year Sampled	Compliance Achieved	PHG	Action Level (AL)	90 th Percentile	No. of Homes Sampled	Homes Above Action Level	Typical Source				
Lead (ppb)	2019	Yes	0.2	15	1	30	0	Corrosion of household plumbing systems.				
Copper (ppm)	2019	Yes	0.3	1.3	0.146	30	0	Corrosion of household plumbing systems.				

	TOTAL COLIFORM RULE - At least 10 samples collected each week in the distribution system										
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG (MCLG)	MCL	Highest Percentage	Typical Source					
Total Coliform	2020	Yes	0	MCL = Less than 5%	1.89	Naturally present in the environment.					

NOTE: Coliforms are bacteria that are naturally present in the environment and are used as an indicator of the general bacteriological quality of the water. We are reporting the highest percentage of positive samples / highest number of positive samples in any month.

	DISINFECTION BYPRODUCTS - Collected in the Distribution System											
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG (MCLG)	MCL	Highest Compliance Result	Range Detected	Typical Source					
Total Trihalomethanes (TTHMs) (ppb)	2020	Yes	NA	80	22	ND to 26.8	By-product of drinking water disinfection.					
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	16	ND to 20.4	By-product of drinking water disinfection.					

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

DISINFECTANTS - Collected in the Distribution System										
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Average Amount Detected	Range Low-high	Typical Source			
Distribution System Chlorine Residual (ppm)	2020	Yes	4	4	0.73	0.40 to 0.93	Water additive used to control microbes.			

	TREATMENT BYPRODUCTS PRECURSOR REMOVAL - Collected at the Treatment Plant (SJWD)										
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	MCL	Range of % Removal Required	Range of % Removal Achieved	Range Detected ¹	Typical Source			
Total Organic Carbon (TOC)	2020	Yes	NA	π	N/A	N/A	0.8 to 1.25	Naturally present in the environment.			

¹⁻Source water TOC less than 2.0 mg/L used as alternative criteria to exempt from removal ratio requirements for surface water sources. Values given represents maximum running annual average of any quarter during 2020 for each source.

	TURBIDITY - Continuous Monitoring at the Treatment Plant (SJWD)											
Substance (with units)	Year Sampled	Complianc e Achieved	MCLG	MCL	Highest Single Measurement and Lowest Monthly % of Samples <0.3 NTU	Sample Date of Highest and Lowest Compliance Result	Typical Source					
	2020	Yes	0	TT: Single result >1 NTU	0.038	N/A	Soil runoff.					
Turbidity (NTU)	2020	Yes	NA	TT: At least 95% of samples <0.3 NTU	100%	N/A	Soil runoff.					

	PRIMARY REGULATED SUBSTANCES												
					Ant	elope	SJWD						
Substance (with units)	Year Sampled	Compliance Achieved	MCL	PHG (MCLG)	Average Amount Detected	Range Low-high	Average Amount Detected	Range Low-high	Typical Source				
Aluminum (ppm)	2018, 2020	Yes	1	0.6	ND	ND to 0.13	ND	ND	Erosion of natural deposits; residual from some surface water treatment processes				
Arsenic (ppb)	2018, 2020	Yes	10	0.004	2	ND to 3.4	ND	ND	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes				
Barium (ppm)	2018, 2020	Yes	1	2	ND	ND to 0.13	ND	ND	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.				
Nitrate (as nitrogen) (ppm)	2020	Yes	10	10	1.6	0.44 to 3.1	ND	ND	Runoff and leaching from fertilizer use; Leaching from septic tanks and sewage; Erosion of natural deposits				
Chromium Total (ppb)	2018 - 2019	Yes	50	N/A	ND	ND to 13	ND	ND	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits				
Nickel (ppb)	2018, 2020	Yes	100	12	ND	ND - 28	ND	ND	Erosion of natural deposits; discharge from metal factories				
Fluoride (ppm) 2	2020	Yes	2.0	1	0.2	ND to 0.68	ND	ND	Erosion of natural deposits; discharge from fertilizer and aluminum factories				

^{2 -}Some people who drink water containing fluoride in excess of the federal MCL of 4 mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the state MCL of 2 mg/L may get mottled teeth.

	SECONDARY REGULATED SUBSTANCES											
				Ante	lope	S	JWD					
Substance (with units)	Year Sampled	Compliance Achieved	SMCL ³	Average Amount Detected	Range	Average Amount Detected	Range Low-high	Typical Source				
Aluminum (ppb)	2018,2020	Yes	200	ND	ND to 130	ND	ND	Erosion of natural deposits; residual from some surface water treatment processes				
Chloride (ppm)	2018-2020	Yes	500	38	13 to 92	1.8	NA	Erosion or leaching of natural deposits				
Copper (ppm)	2018, 2020	Yes	1	0.01	ND to 0.11	ND	ND	Erosion of natural deposits; leaching from wood preservatives				
Iron (ppb)	2018, 2020	Yes	300	51	ND to 210	ND	ND	Leaching from natural deposits; Industrial wastes				
Specific Conductance (umhos/cm)	2018, 2020	Yes	1600	346	220 to 480	73	53 to 88	Substances that form ions when in water; Seawater influence				
Sulfate (ppm)	2018, 2020	Yes	500	5.0	1.7 to 11	3.8	NA	Runoff/leaching from natural deposits; Industrial wastes				
Total Dissolved Solids (ppm)	2018, 2020	Yes	1000	246	190 to 340	30	NA	Runoff/leaching from natural deposits				
Turbidity (NTU)	2018, 2020	Yes	5	0.4	ND to 1.4	0.02	0.018 to 0.038	Soil runoff				

^{3 -} Substances with Secondary MCLs do not have MCLGs; these limits are primarily established to address aesthetic concerns

	OTHER SUBSTANCES OF INTEREST											
Substance		Ante	elope	S	JWD							
(with units)	Year Sampled	Average Amount Detected	Range Low-high	Average Amount Detected	Range Low-high	Comments						
Total Alkalinity as CaCO3 (ppm)	2018, 2020	101	75 to 130	13	NA							
Calcium (ppm)	2018, 2020	22	14 to 30	3.3	NA							
Magnesium (ppm)	2018, 2020	14	8.9 to 14	1.0	NA							
рН	2018, 2020	7.6	7.2 to 8.2	N/A	N/A							
Sodium (ppm)	2018, 2020	28	16 to 49	1.6	NA	"Sodium" refers to the salt present in the water and is generally naturally occurring.						
Total Hardness as CaCO3 (ppm)	2018, 2020	110	76 to 170	12	NA	"Hardness" is the sum of polyvalent cations present in the water, generally						
Total Hardness as CaCO3 (grains/gallon)	2018, 2020	6.4	4.4 to 9.9	0.7	NA	magnesium and calcium. The cations are usually naturally occurring						
Aggressive Index	2018, 2020	11.1	10.9 to 11.4	N/A	N/A	1						

UNREGULATED CONTAMINANT MONITORING

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is necessary. Every five years, the EPA issues a new list of no more than 30 unregulated contaminants to be monitored.

	ADDITIONAL WATER QUALITY PARAMETERS OF INTEREST											
	Year		Antelope			SJWD						
Parameter (with units)	Sampled	PHG (NL)	Average Result	Range Low-high	Average Result	Range Low-high	Typical Source/Notes					
Chlorate (ppb)	2013	(800)	114	ND to 570	ND	ND	Oxidant used in pyrotechnics and possible by-product of water treatment					
Chromium Hexavalent ⁴ (ppb)	2020	N/A	5.3	ND to 10.7	0.08	0.07 to 0.09	By-product of drinking water disinfection					
Strontium (ppb)	2015, 2020	N/A	206	140 to 290	59.8	52 to 64	Naturally-occurring elemental metal; largely used in aluminum alloy production. Essential dietary element.					
Vanadium (ppb)	2013, 2018-2019	(50)	23.4	20 to 33	0.67	0.47 to 10	The babies of some pregnant women who drink water containing vanadium in excess of the Notification Level may have an increased risk of developmental effects, based on studies in laboratory animals.					
Manganese (ppb)	2019-2020	(500)	7.1	ND to 38	1.05	ND to 3.24	Leaching from natural deposits					
o-Toluidine (ppb)	2019-2020	N/A	ND	ND to 0.037	ND	NA						
HAA5 (ppb)	2019-2020	MCL=60	5.92	ND to 20	21.14	18.97 to 31.6	By-product of drinking water disinfection					
HAA6Br (ppb)	2019-2020	N/A	0.23	ND to 1.4	ND	ND	By-product of drinking water disinfection					
HAA9 (ppb)	2019-2020	N/A	6.22	ND to 21	24.66	15.57 to 32.62	By-product of drinking water disinfection					
Germanium	2019-2020	N/A	ND	ND to 0.63	ND	ND						
Boron (ppm)	2018-2019	1	0.15	ND to 0.47	N/A	N/A	Based on studies in laboratory animals, the babies of some pregnant women who drink water containing boron in excess of the Notification Level may have an increased risk of developmental effects.					

^{4 -} There is currently no MCL for hexavalent chromium. The previous MCL of 10 µg/L was withdrawn on September 11, 2017.

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wqa.org

National Library of Medicine/National Institute of Health:

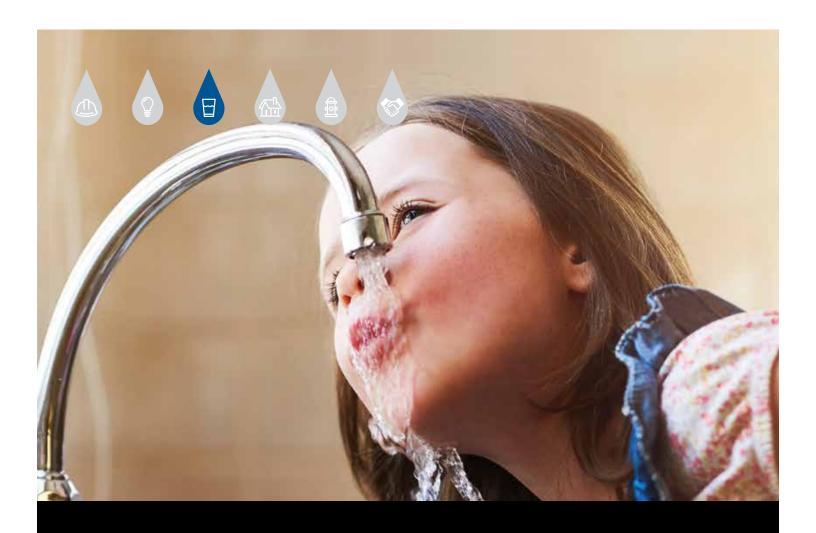
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

ARDEN | PWS ID: 3410045

WE KEEP LIFE FLOWING™

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

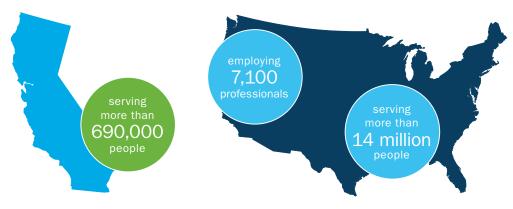
SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

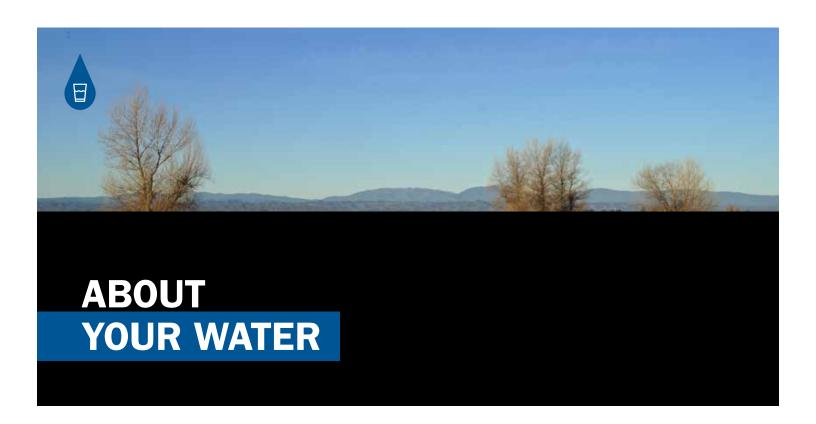
Sincerely,

RICHARD SVINDLAND


President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

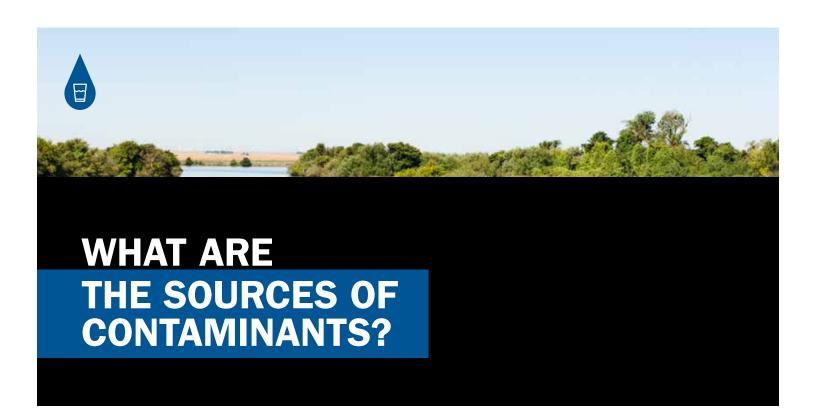
ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)


California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

The Arden water system is served by deep wells that pump groundwater from aquifers here in the Sacramento Valley. All of these wells are located within the geographic boundaries of the Arden service area. California American Water chlorinates your drinking water to ensure that it meets bacteriological quality standards. Since May 2007, fluoride has been added to the Arden system to promote dental health.


Some years, California American Water may also supplement the Arden system with surface water purchased from the City of Sacramento. Sacramento uses various surface water treatment technologies including coagulation, sedimentation, filtration and disinfection. In 2018, the Arden system did not purchase water from the City of Sacramento.

The water supply is distributed for residential and commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources in the Arden system was completed in February 2003. No manmade contaminants have been detected in the water supply. The sources are considered most vulnerable to the following (although not associated with any detected chemicals): automobile gas stations, underground storage tanks (confirmed leaking tanks) and dry cleaners.

A copy of the completed assessment may be viewed at: California American Water, 4701 Beloit Drive, Sacramento, CA 95838.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS.

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS,

which can be naturally occurring or may be the result of oil and gas production and mining activities.

FLUORIDE

Fluoride is a naturally occurring substance. It can be present in drinking water from two sources:

- **1. By nature** when groundwater comes into contact with fluoride-containing minerals naturally present in the earth; or
- 2. By a water purveyor through addition of fluoride to the water they are providing in the distribution system.

In the Arden system, fluoride is added to the water supply at concentrations based on state fluoride regulations managed by the State Water Resources Control Board, Division of Drinking Water and the Office of Oral Health. According to these agencies, when fluoride is present in drinking water at optimal levels, it has been shown to promote oral health by preventing tooth decay.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking.

If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

TESTING LEAD IN PUBLIC SCHOOLS

To safeguard water quality in California's K-12 public schools, California Assembly Bill 746 requires community water system to test lead levels, by July 1, 2019, in drinking water at all California public, K-12 school sites that were constructed before January 1, 2010. California American Water serves 2 public school sites (in the San Juan Unified School District) in the Arden water system and has completed the testing at all sites. California law makes school districts responsible for informing parents of lead testing results for their schools. Please contact your child's school or school district to get detailed results on lead testing at your child's school.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- **MCLG** is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results

Regulated Substances

				Average Amount Detected	Range				
Substance (Units)	Year Sampled	MCL	PHG (MCLG)		Low	High	Violation	Major Sources in Drinking Water	
Arsenic (ppb)	2018	10	0.004	2.9	2.4	3.4	No	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes	
Nitrate (as Nitrogen) (ppm)	2018	10	10	1.2	ND	2.8	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	

Distribution System Monitoring

Fluoride (ppm) ¹	2018	0.6 -1.2 ²	N/A	0.86	0.70	0.70 1.1 No Water additive which promotes strong teeth		Water additive which promotes strong teeth		
Chlorine (ppm)	2018	MRDL=4.0	MRDLG=4.0	8.0	0.3	1.6	No	Treatment chemical used to disinfect drinking water		
Haloacetic Acids (HAA5) (ppb)	2018	60	N/A	ND	ND		No	By-product of drinking water disinfection		
Total Trihalomethanes (TTHM) (ppb)	2018	80	N/A	ND	ND		ND		No	By-product of drinking water disinfection

³California American Water adjusts the natural levels of fluoride in your water to the the State Water Resources Control Board, Division of Drinking Water 's recommended optimum level.

Secondary Substances

	Year		Average Amount	Range				
Substance (Units)	Sampled	SMCL ³	Detected	Low	High	Violation	Major Sources In Drinking Water	
Chloride (ppm)	2018	500	17	6.0	30	No	Runoff/leaching from natural deposits; Seawater influence	
Specific Conductance (µmhos/cm)	2018	1600	298	170	400	No	Substances that form ions when in water; Seawater influence	
Sulfate (ppm)	2018	500	11	5.7	15	No	Runoff/leaching from natural deposits; Industrial wastes	
Total Dissolved Solids (ppm)	2018	1000	205	140	270	No	Runoff/leaching from natural deposits	
Turbidity (NTU)	2018	5	0.17	ND	0.22	No	Soil runoff	

³ Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. These contaminants are not considered to present a risk to human health at the SMCL.

Lead and Copper (tap water samples)

Substance (Units)	Year Sampled	Action Level	PHG (MCLG)	Number of Samples	Amount Detected (90th Percentile)	Homes Above Action Level	Violation	Major Sources in Drinking Water
Copper (ppm)	2016	1.3	0.3	20	0.164	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2016	15	0.2	20	1	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Discharges from industrial manufacturers

Additional Water Quality Parameters of Interest

This table shows average levels of additional water quality parameters that are often of interest to consumers. The averages shown are calculated from the levels detected at each source used to supply water is 2018. Values may vary from day-to-day. There are no health-based limits for these substance in drinking water.

Cubatanas (Unita)	Year Commission	Average Amount Detected	Range		
Substance (Units)	Year Sampled	Average Amount Detected	Low	High	
Alkalinity as CaCO3 (ppm)	2018	109	65	140	
Calcium (ppm)	2018	21	13	29	
Magnesium (ppm)	2018	14	8.9	22	
рН	2018	7.4	7.2	7.7	
Silica (ppm)	2018	69	63	74	
Sodium (ppm)	2018	13	9.2	17	
Total Hardness as CaCO3 (ppm)	2018	116	69	160	
Total Hardness as CaCO3 (grains/gallon)	2018	6.8	4.0	9.4	

[&]quot;Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.

² Fluoride control range, not an MCL.

[&]quot;Sodium" refers to the salt present in the water and is generally naturally occurring.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

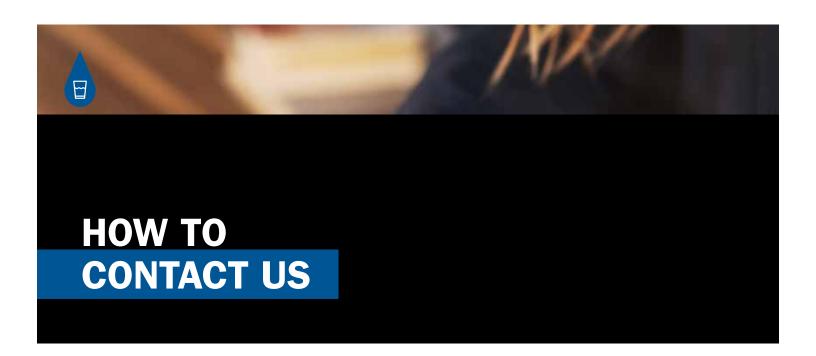
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board

www.swrcb.ca.gov

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

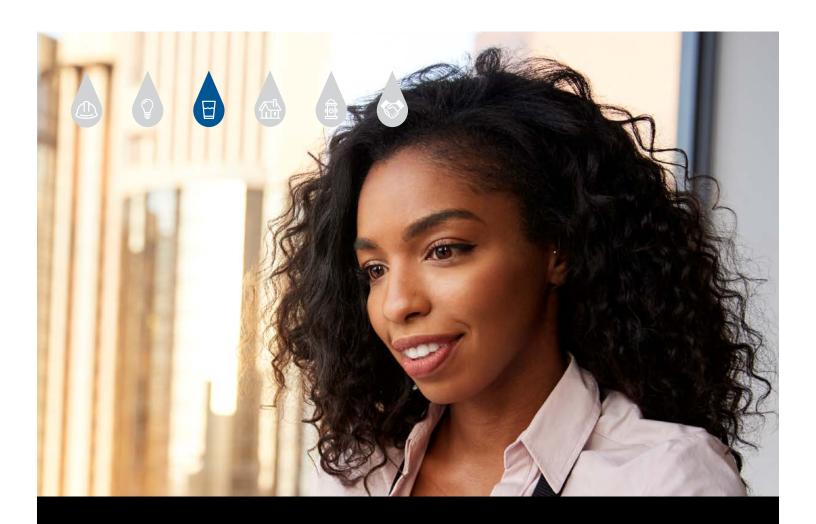
National Library of Medicine/National Institute of Health

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa $(888)\ 237-1333$.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

ARDEN | PWS ID: 3410045

WE KEEP LIFE FLOWING™

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

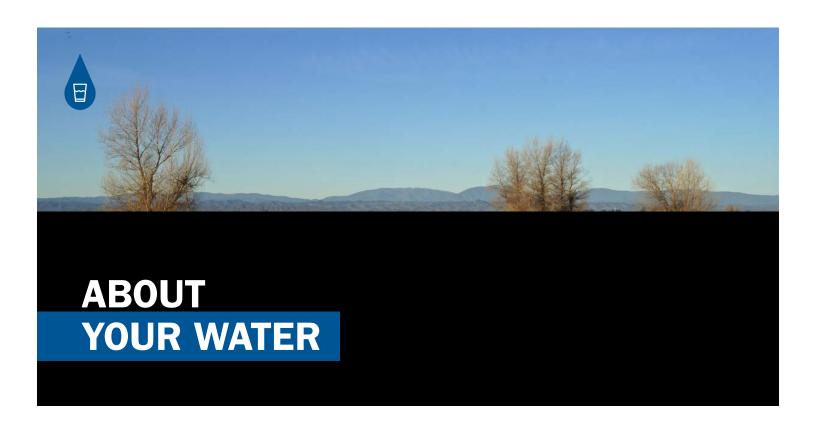
June Chule

President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.



WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

The Arden water system is served by deep wells that pump groundwater from aquifers here in the Sacramento Valley. All of these wells are located within the geographic boundaries of the Arden service area. California American Water chlorinates your drinking water for bacteriological quality. Since May 2007, fluoride has been added to the Arden system to promote dental health.

Some years, California American Water may also supplement the Arden system with surface water purchased from the City of Sacramento. Sacramento uses various surface water treatment technologies including coagulation, sedimentation, filtration and disinfection. In 2019, the Arden system did not purchase water from the City of Sacramento.

The water supply is distributed for residential and commercial use.

NOTICE OF SOURCE WATER ASSESSMENT (SWA)

An assessment of the drinking water sources in the Arden system was completed in February 2003. The sources are considered most vulnerable to the following (although not associated with any detected chemicals): automobile gas stations, underground storage tanks (confirmed leaking tanks) and dry cleaners.

A copy of the completed assessment may be viewed at: California American Water, 4701 Beloit Drive, Sacramento, CA 95838.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

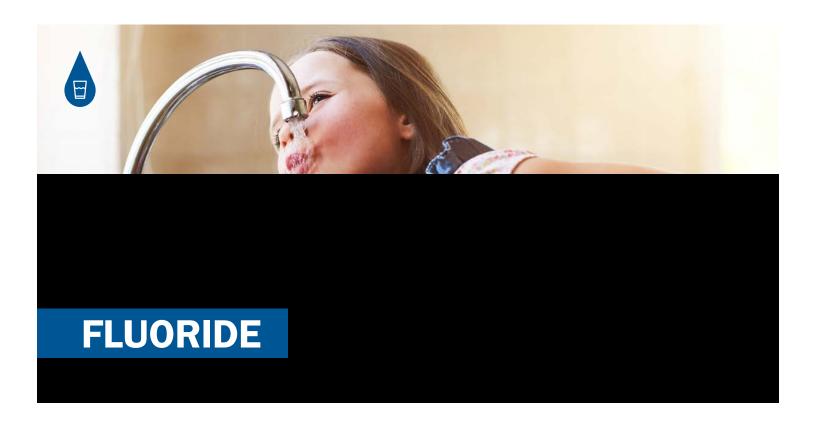
ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES


which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

FLUORIDE

Fluoride is a naturally occurring substance. It can be present in drinking water from two sources:

- **1. By nature** when groundwater comes into contact with fluoride-containing minerals naturally present in the earth; or
- 2. By a water purveyor through addition of fluoride to the water they are providing in the distribution system.

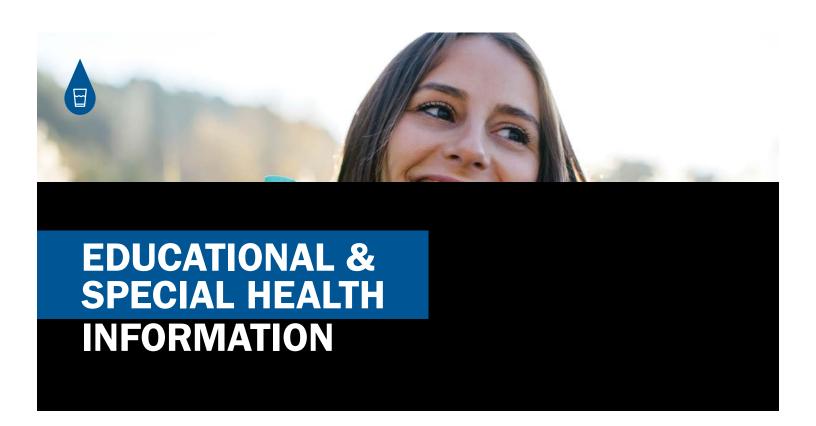
In the Arden system, fluoride is added to the water supply at concentrations based on state fluoride regulations managed by the State Water Resources Control Board, Division of Drinking Water and the Office of Oral Health. According to these agencies, when fluoride is present in drinking water at optimal levels, it has been shown to promote oral health by preventing tooth decay.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

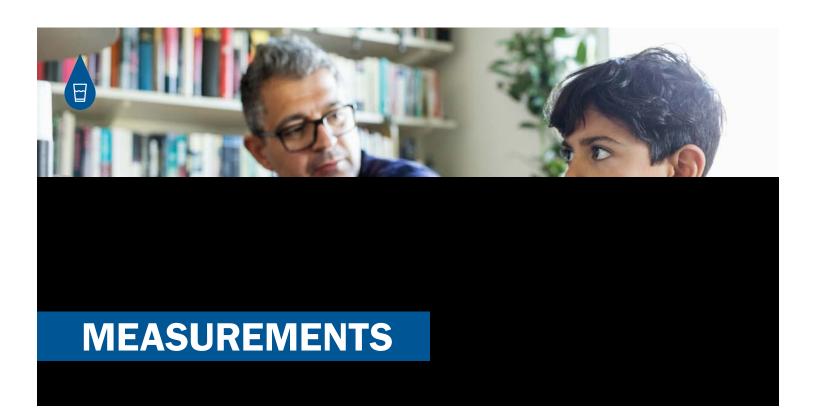
There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.



PFOA/PFOS Monitoring

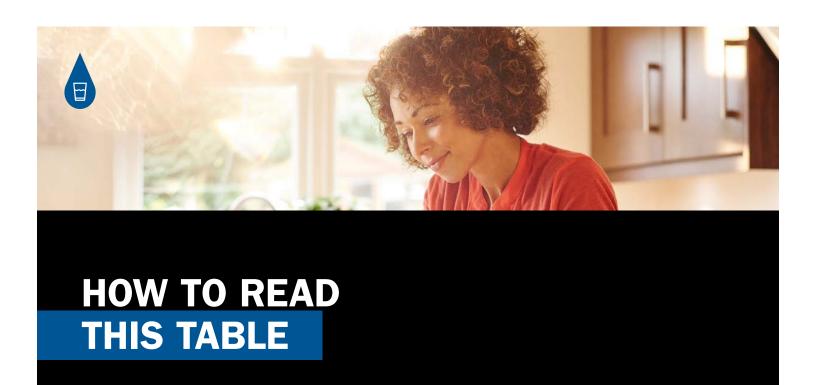
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted PFOA/PFOS monitoring in the source water of the Arden water system in 2019. Out of a total of four monitoring locations, three wells had a detection of PFOA and PFOS. The well that had PFOA detected above the current Response Level for PFOA (10 ppt) was taken out of service.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 12 days in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- 1 Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

2019 Annual Water Quality Results | Arden

Regulated Substances

	Average Range								
Substance (Units)	Year Sampled*	MCL	PHG (MCLG)	Amount Detected	Low	High	Violation	Major Sources in Drinking Water	
Arsenic (ppb)	2018	10	0.004	3.0	2.5	3.4	No	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes	
Nitrate (as Nitrogen) (ppm)	2019	10	10	1.8	0.28	3.9		Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	

Distribution System Monitoring: Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors

Substance (Units)	Voca Sampled	Year Sampled MCL/MRDL MRDLG Amount Violation	Major Sources in Drinking Water						
Substance (Units)	rear Sampleu	MCL/ MRDL	MRDLG	Detected	10.4		Violation	major sources in Difficulty Water	
Fluoride (ppm) ¹	2019	0.6 -1.2 ²	N/A	0.8	0.3	1.0	No	Water additive which promotes strong teeth	
Chlorine (ppm)	2019	MRDL=4.0	MRDLG=4.0	0.8	0.21	1.2	No	Treatment chemical used to disinfect drinking water	

¹California American Water adjusts the natural levels of fluoride in your water to the the State Water Resources Control Board, Division of Drinking Water's recommended optimum level.

Secondary Substances

			Average Amount	Range		Malada		
Substance (Units)	(Units) Year Sampled SMCL 3 Average Arrount Detected Low High		Major Sources in Drinking Water					
Chloride (ppm)	2018 - 2019	500	13	6.0	30	No	Runoff/leaching from natural deposits; Seawater influence	
Specific Conductance (µmhos/cm)	2018 - 2019	1600	244	170	390	No	Substances that form ions when in water; Seawater influence	
Sulfate (ppm)	2018 - 2019	500	8.5	5.5	15	No	Runoff/leaching from natural deposits; Industrial wastes	
Total Dissolved Solids (ppm)	2018 - 2019	1000	188	170	270	No	Runoff/leaching from natural deposits	
Turbidity (NTU)	2018 - 2019	5	0.56	0.21	1.8	No	Soil runoff	

³ Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. These contaminants are not considered to present a risk to human health at the SMCL.

Lead and Copper (tap water samples)

Substance (Units)	Year Sampled	Action Level	PHG (MCLG)	Number of Samples	Amount Detected (90th Percentile)	Homes Above Action Level	Violation	Major Sources in Drinking Water
Copper (ppm)	2019	1.3	0.3	22	0.194	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2019	15	0.2	22	ND	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Discharges from industrial manufacturers

²Fluoride control range, not an MCL.

Additional Water Quality Parameters of Interest

This table shows average levels of additional water quality parameters that are often of interest to consumers. The averages shown are calculated from the levels detected at each source used to supply water is 2019 and in distribution system. Values may vary from day-to-day. There are no health-based limits for these substance in drinking water.

			Re	ange
Substance (Units)	Year Sampled	Average Amount Detected	Low	High
Alkalinity as CaCO3 (ppm)	2018 - 2019	101	65	140
Bicarbonate Alkalinity (ppm)	2018 - 2019	101	65	130
Calcium (ppm)	2018 - 2019	18	13	29
Magnesium (ppm)	2018	14	8.9	22
pH	2018 - 2019	7.5	7.4	7.7
Silica (ppm)	2018	69	63	74
Sodium (ppm)	2018	12	9.2	17
Total Hardness as CaCO3 (ppm)	2018 - 2019	97	69	160
Total Hardness as CaCO3 (grains/gallon)	2018 - 2019	5.7	4.0	9.4

[&]quot;Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

Unregulated Substances

Substance	Year Sampled	NI	Average Amount	Range		
(units)	rear sampled	NL	Detected	Low	High	
Perfluorooctanoic Acid [PFOA] (ppt)	2019	5.1	13.4	ND	31.5	
Perfluorooctanesulfonic Acid [PFOS] (ppt)	2019	6.5	9.2	ND	21.0	

California American Water conducted PFOA/PFOS monitoring in the source water of Arden water system in 2019. Out of a total 4 monitoring locations, 3 wells had a detection of PFOA and PFOS. The well that had PFOA detected above current Respnose Level for PFOA (10 PPT) was taken out of service.

See page 9 for more PFOA/PFOS information.

 $[\]verb"Sodium" refers to the salt present in the water and is generally naturally occurring.$

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

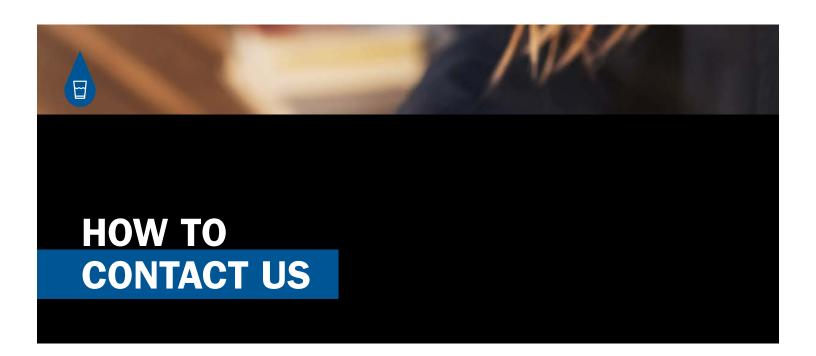
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW)

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of Health

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa (888) 237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

ARDEN
PWS ID: CA3410045

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich SvindlandPresident
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

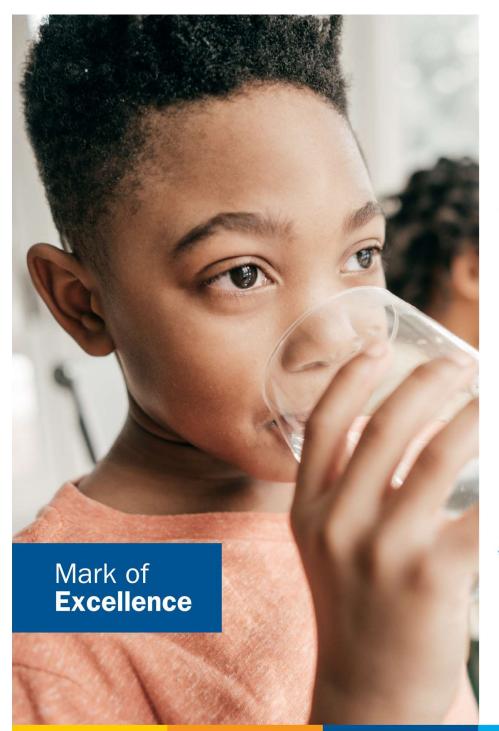
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

Spind Chulm

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

A message from our President	2
What is a Consumer Confidence Report	3
Mark of Excellence	4
About Your Drinking Water Supply	į
What are the Sources of Contaminants?	(
Protecting Your Drinking Water Supply	-
About Lead	8
Important Information About Your Water	9-10
TCR/rTCTPFOA/PFAS	
Water Quality Results	1:
Definitions of Terms Used in Document	12
Water Quality Results: Detailed Charts	13-15
Public Notification	16
About Us	17
Contact Us	18

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

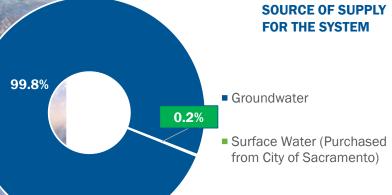
American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.

WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.


About Your **Drinking Water Supply** 99.8%

WHERE YOUR WATER COMES FROM

The Arden water system is served by deep wells that pump groundwater from aquifers in the Sacramento Valley. Some years, California American Water may also supplement the Arden system with surface water purchased from the City of Sacramento. The water from the City originates from the American and Sacramento Rivers.

An assessment of the drinking water sources in the Arden system was completed in February 2003. The sources are considered most vulnerable to the following (although not associated with any detected chemicals): automobile gas stations, underground storage tanks (confirmed leaking tanks) and dry cleaners. A copy of the completed assessment may be viewed at California American Water, 4701 Beloit Drive, Sacramento, CA 95838.

Assessments of potential contaminating activities for the City's Sacramento River and American River water sources were completed in December 2010 and December 2008, respectively. These reports indicated that both rivers are most vulnerable to contaminants from recreational activities, urban runoff, industrial discharge, and that the Sacramento River is vulnerable to agricultural contaminants. A copy of the complete assessment is available for review in the City Clerk's office at City Hall or call (916) 808-5011 to request a summary of the assessments.

QUICK FACTS ABOUT THE ARDEN SYSTEM

Water source:

Groundwater wells. In 2020, Arden water system received about 0.2% of water from the City of Sacramento. These source's contribution for 2020 is considered insignificant.

Disinfection and other treatment: California American Water chlorinates your drinking water for bacteriological quality. Since May 2007, fluoride has been added to the Arden system to promote dental health.

City of Sacramento surface water supplies are treated by conventional treatment technologies including coagulation, sedimentation and filtration (using sand and anthracite filters), lime addition for corrosion control, fluoridation to promote dental health, and chlorination for disinfection.

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

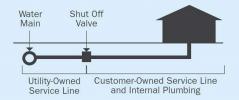
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Victoria Kunda at 916-568-4278.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

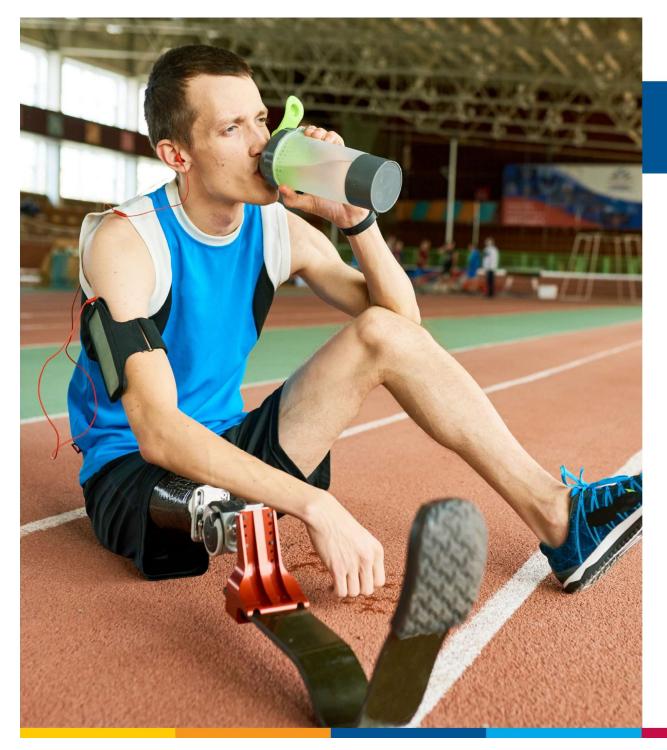
Important Information About **Drinking Water**

THE STATE TOTAL COLIFORM RULE (TCR) AND FEDERAL REVISED TOTAL COLIFORM RULE (RTCR)

This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2016. All water systems are required to comply with the state Total Coliform Rule. Effective April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The new federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.


In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA) in drinking water. In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich

Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and federal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

OTHER INFORMATION

In 2020 we detected the presence of coliforms in excess of that allowed. Under the Revised Total Coliform Rule this triggered the requirement to perform a Level 1 Assessment, the results of which are described in the section **Public Notification** after the tables.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

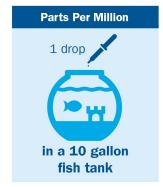
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

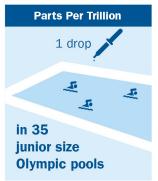
RAA: Running Annual Average

Secondary Maximum Contaminant Level (**SMCL**): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

12

Water Quality **Results**

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the following tables were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 40 tap water samples collected at customers' taps every 6 months											
Substance (with units)	Year Sampled	Compliance Achieved	PHG	Action Level (AL)	90 th Percentile	No. of Homes Sampled	Homes Above Action Level	Typical Source				
Lead (ppb)	2020	Yes	0.2	15	ND	40	0	Corrosion of household plumbing systems.				
Copper (ppm)	2020	Yes	0.3	1.3	0.207	40	0	Corrosion of household plumbing systems.				

NOTE: Due to the recent addition of new water source, Lead and Copper monitoring frequency was increased for 2020-2021

	TOTAL COLIFORM RULE - At least 6 samples collected each month in the distribution system										
Substance (with units)	MICH HIGHEST NO OF SAMPLES IVALICAL SOURCE										
Total Coliform	2020	Yes	0	MCL = No more than 1 positive monthly sample	2	Naturally present in the environment.					

NOTE: Coliforms are bacteria that are naturally present in the environment and are used as an indicator of the general bacteriological quality of the water. We are reporting the highest percentage of positive samples / highest number of positive samples in any month.

DISINFECTANTS - Collected in the Distribution System									
Substance Year Compliance MRDLG MRDL Average Amount Range Typical Source (with units) Sampled Achieved									
Distribution System Chlorine Residual (ppm)	2020	Yes	4	4	0.74	0.22 to 0.98	Water additive used to control microbes.		

PRIMARY REGULATED SUBSTANCES											
Substance (with units)	Year Sampled	Compliance Achieved	MCL	PHG (MCLG)	Average Amount Detected	Range	Typical Source				
Arsenic (ppb)	2018, 2020	Yes	10	0.004	2.8	2.4 to 3.4	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes				
Nitrate (as nitrogen) (ppm)	2020	Yes	10	10	1.6	0.48 to 3.1	Runoff and leaching from fertilizer use; Leaching from septic tanks and sewage; Erosion of natural deposits				
Fluoride (ppm) ¹	2020	Yes	2.0 (0.6 - 1.2 ²)	1	0.92	0.51 to 1.0	Water additive that promotes strong teeth				

- 1 California American Water adjust the natural levels of fluoride in our water supplies to the State Water Resources Control Board, Division of Drinking Water's recommended optimum level of 0.7 mg/L. Information about fluoridation, oral health, and current issues is available from http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml. Data collected in the distribution system.
- 2 Fluoride Control Range, not an MCL.

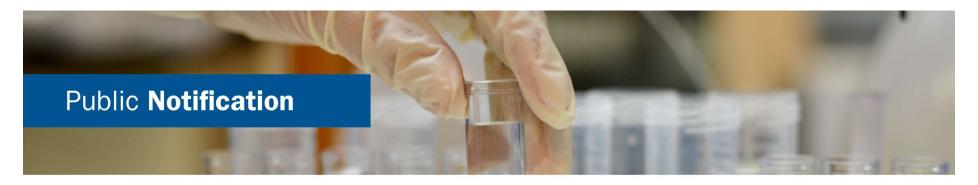
	SECONDARY REGULATED SUBSTANCES									
Substance (with units)	Year Sampled	Compliance Achieved	SMCL ³	Average Amount Detected	Range	Typical Source				
Chloride (ppm)	2018, 2020	Yes	500	20.5	6.0 to 30	Erosion or leaching of natural deposits				
Specific Conductance (umhos/cm)	2018, 2020	Yes	1600	327	170 to 400	Substances that form ions when in water; Seawater influence				
Sulfate (ppm)	2018, 2020	Yes	500	11.3	6.3 to 15	Runoff/leaching from natural deposits; Industrial wastes				
Total Dissolved Solids (ppm)	2018, 2020	Yes	1000	228	140 to 280	Runoff/leaching from natural deposits				
Turbidity (NTU)	2018, 2020	Yes	5	0.4	0.2 to 0.65	Soil runoff				

3 - Substances with Secondary MCLs do not have MCLGs; these limits are primarily established to address aesthetic concerns

		OTHER SUBSTANCES 0	F INTEREST	
Substance (with units)	Year Sampled	Average Amount Detected	Range Low-high	Comments
Total Alkalinity as CaCO3 (ppm)	2018, 2020	130	120 to 140	
Calcium (ppm)	2018, 2020	28	13 to 37	
Magnesium (ppm)	2018, 2020	15.6	8.9 to 22	
рН	2018, 2020	7.4	7.2 to 7.7	
Sodium (ppm)	2018, 2020	13.7	9.2 to 17	"Sodium" refers to the salt present in the water and is generally naturally occurring.
Total Hardness as CaCO3 (ppm)	2018, 2020	138	69 to 180	"Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally
Total Hardness as CaCO3 (grains/gallon)	2018, 2020	8.1	4.0 to 10.5	occurring
Aggressive Index	2018, 2020	11.5	11.2 to 11.8	14

UNREGULATED CONTAMINANT MONITORING

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is necessary. Every five years, the EPA issues a new list of no more than 30 unregulated contaminants to be monitored.


ADDITIONAL WATER QUALITY PARAMETERS OF INTEREST								
Parameter (with units) Year Sampled PHG (NL) Average Result Range Detected Typical Source/Notes								
Chromium Hexavalent ⁴ (ppb)	2020	N/A	1.7	ND to 3.5	By-product of drinking water disinfection			

^{4 -} There is currently no MCL for hexavalent chromium. The previous MCL of 10 µg/L was withdrawn on September 11, 2017.

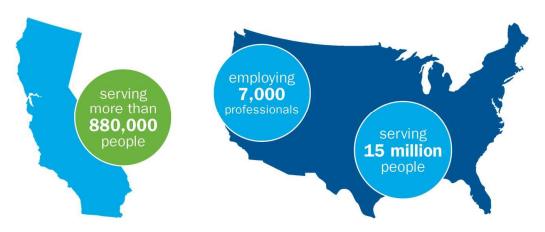
PER- AND POLYFLUOROALKYL SUBSTANCES

Per- or polyfluoroalkyl substances (PFASs) are man-made substances used in a variety of products, such as: stain resistant fabric, non-stick coatings, firefighting foam, paints, waxes, and cleaning products. They are also components in some industrial processes like electronics manufacturing and oil recovery. While the EPA has not developed drinking water standards for PFAS, California American Water recognizes the importance of testing for these contaminants. Compounds detected are tabulated below, along with typical sources.

UNREGULATED PERFLUORINATED COMPOUNDS									
Parameter	Units	Notification Level	Average Result	Range Detected	Typical Source				
Perfluorooctanesulfonic Acid (PFOA)	ppt	5.1	ND	ND to 4.1	Used for its emulsifier and surfactant properties in or as fluoropolymers (such as Teflon), fire fighting foams, cleaners, cosmetics, lubricants, paints, polishes, adhesives and photographic films				

Level 1 Assessment Requirement

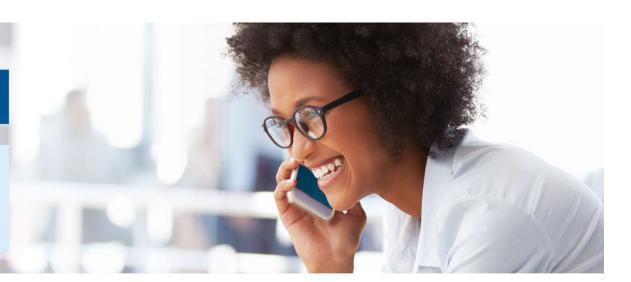
Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year we were required to conduct one Level 1 Assessment. One Level 1 Assessment was completed. In addition, we were required to take two corrective actions and we completed two of these actions.


During the past year zero Level 2 Assessments were required to be completed for our water system.

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.



CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wqa.org

National Library of Medicine/National Institute of Health:

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 Consumer Confidence Report

Water System Name: Coarsegold

Report Date: May 23, 2018

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Hillview Water Company a 30412 Greenwood Way, Oakhurst, CA para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Hillview Water Company 以获得中文的帮助: 30412 Greenwood Way, Oakhurst, CA 559.683.4322.

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Hillview Water Company 30412 Greenwood Way, Oakhurst, CA o tumawag sa 559.683.4322 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Hillview Water Company tại 30412 Greenwood Way, Oakhurst, CA để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Hillview Water Company ntawm 30412 Greenwood Way, Oakhurst, CA rau kev pab hauv lus Askiv.

Type of water source(s) in use: Hard rock wells which draw from underground fractures.

Name & general location of source(s): Coarsegold Wells #2 and #3.

Drinking Water Source Assessment information: A source water assessment was completed on January 23, 2002 for the active water supply wells of the Hillview Water Company, Inc. - Coarsegold. The sources are considered most vulnerable to the following activities not associated with any detected contaminates: Transportation corridors – Roads/Streets; Wells – Water supply. A copy of the complete assessment may be viewed at the Hillview Water Company, Inc. 40312 Greenwood Way, Oakhurst, CA 93644. You may request a summary of the assessment be sent to you by contacting Ralph Fairfield 559.683.4322, P.O. Box 2269 Oakhurst, CA 93644.

Time and place of regularly scheduled board meetings for public participation: Hillview Water Company, Inc., does not hold regularly scheduled meetings. The public is allowed to participate in all CPUC proceedings. For more information, contact: Hillview Water Company, Inc.

Phone: 559.683.4322

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- > Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- > Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- > Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE	1 – SAMPL	ING RESULTS SHOW	VING THE DETECT	ION OF CO	LIFORM BACTERIA
Microbiological Contaminants (Complete if bacteria detected.)	Highest No. of Detections	No. of months in violation	, MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria (State Total Coliform Rule.)	(In a mo.) 0	0	1 positive monthly sample.	0	Naturally present in the environment.
Fecal Coliform or <i>E. coli</i> (State Total Coliform Rule.)	(In the year.) 0	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive.		Human and animal fecal waste.
E. coli (Federal Revised Total Coliform Rule.)	(In the year.) 0	0	(a)	0	Human and animal fecal waste.

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 – SAI	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper (Complete if lead or copper detected in the last sample set.)	Sample Date	No. of p samples collected	ercentiid	No. sites exceedin g AL		PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant				
Lead (ppb)	8/9, 8/16, 8/22/2017	5	ND	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.				
	8/9, 8/16, 8/22/2017	5	0.064	0	1.3	0.3	Not Applicable.	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.				

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units) Sample Date Level Range of Detections MCL PHG (MCLG) Typical Source of Contaminant									
Sodium (ppm)	8/16/17	26	25 – 28	None	None	Salt present in the water and is generally naturally occurring.			
Hardness (ppm)	8/16/17	160		None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring.			

TABLE 4 –	DETECTIO	N OF CONTAIN	IINANTS WITH	A <u>PRIMA</u> F	<u>RY</u> DRINKIN	G WATER STANDARD	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant	
Arsenic (ppb)	6/28, 7/13/17	1.66	ND – 3 10 0.004 1		0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.	
Chlorine (ppm)	January - December	1.75	1.75 1.29 – 2.74 [4.0 (as Cl ₂)] [4 ([4 (as Cl ₂)]	Drinking water disinfectant added for treatment.	
Fluoride (ppm)	6/28/17	ND	2		1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.	
Haloacetic Acids (five) (HAA5) (ppb)	8/16/17	25		60	NA	By-product of drinking water disinfection.	
TTHMs (Total Trihalomethanes) (ppb)	8/16/17	37		80	NA	By-product of drinking water disinfection.	

TABLE 5 – D	ETECTION	OF CONTAMII	NANTS WITH A	SECOND	ARY DRINK	ING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	6/28, 8/16/17	48	41 – 63	500	NA	Runoff/leaching from natural deposits; seawater influence.
Color (Units)	6/28/17	13	ND – 30	15	NA	Naturally-occurring organic materials.
*Iron (ppb)	2/6, 5/8, 8/1, 11/6/18	6053	1300 - 17000	300	NA	Leaching from natural deposits; industrial wastes.
*Manganese (ppb)	2/6, 5/8, 8/1, 11/6/18	306	270 – 350	50	NA	Leaching from natural deposits.
Specific Conductance (µS/cm)	6/12/18	345	220 – 500	1600	NA	Substances that form ions when in water; seawater influence.
Sulfate (ppm)	8/16/17	56	51 – 62	500	NA	Runoff/leaching from natural deposits; industrial wastes.
Total Dissolved Solids (TDS) (ppm)	8/16/17	291	270 – 320	1000	NA	Runoff/leaching from natural deposits.
Turbidity (Units)	6/28/17	5.66	0.52 – 12	5	NA	Soil runoff.
*Zinc (ppm)	8/16/17	13.36	1.2 – 23	5	NA	Runoff/leaching from natural deposits; industrial wastes.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be

SWS CCR Form Revised February 2018

particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hillview Water Company, Inc., is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLAT	TON OF A MCL, MRDL,	AL, TT, OR MONITORIN	IG AND REPORTING RE	QUIREMENT	
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language	
*Iron (ppb)	Leaching from natural deposits; industrial wastes.	Duration unknown.	A plan for mitigating the secondary drinking water standard for iron is in progress. Sequestration will be used to meet the standard. The project is in progress. Completion expected in 2020.	Iron was found at levels that exceed the secondary MCL of 300 µg/L. The iron MCL was set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high levels are due to leaching of natural deposits.	
*Manganese (ppb)	Leaching from natural deposits.	Duration unknown.	A plan for mitigating the secondary drinking water standard for manganese is in progress. Sequestration will be used to meet the standard. The project is in progress. Completion expected in 2020.	The manganese MCL is a secondary drinking water standard and no Health Effects Language is provided for the MCL of 50 ppb, only for the notification level of 500 ppb.	
*Zinc (ppm)	Runoff/leaching from natural deposits; industrial wastes.	Duration unknown.	Zinc is a secondary drinking water standard and Hillview will continue to monitor the zinc levels.	Zinc is a secondary drinking water standard and no Health Effects Language is provided.	

2019 Consumer Confidence Report

Water System Name: **Coarsegold Highlands** 6/5/2020 Report Date:

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Hillview Water Co., Inc a [Enter Water System's Address or Phone Number Here] para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Hillview Water Co., Inc 以获得中文的帮助: 40312 Greeenwood Wav. 559-683-4322.

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Hillview Water Co., Inc 40312 Greenwood Way_o tumawag sa 559-683-4322 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trong về nước uống của ban. Xin vui lòng liên hệ Hillview Water Co., Inc tại 40312 Greeenwood Way, 559-683-4322 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawy no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thoy hu rau Hillview Water Co., Inc ntawm 40312 Greeenwood Way, 559-683-4322 rau kev pab hauv lus Askiv.

Type of water source(s) in use: Hard rock wells, which draw from underground fractures.

Name & general location of source(s): Coarsegold Wells #2 and #3

Drinking Water Source Assessment information: A source water assessment was completed January 23, 2002 for the the active water supply wells of the Hillview Water Co. – Coarsegold. The sources are considered most vulnerable to the following activities not associated with any detected contaminants: Transportation corridors- Roads/Streets; Wells-Water supply. A copy of the complete assessment may be viewed at the Hillview Water Company, Inc. 40312 Greenwood Way, Oakhurst, CA 93644. You may request a summary of the assessment be sent to you by contacting Jim Foster (559)683-4322, PO Box 2269, Oakhurst, CA 93644.

Hillview Water Company, Inc does not Time and place of regularly scheduled board meetings for public participation:

Hold regularly scheduled meetings. The public is allowed to participate in all CPUC proceedings.

For more information, contact: Hillview Water Company, Inc. (559)683-4322 Phone:

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

ppt: parts per trillion or nanograms per liter (ng/L)ppq: parts per quadrillion or picogram per liter (pg/L)pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- ! *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- ! *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- ! Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- ! Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- ! Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4 and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA									
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria					
Total Coliform Bacteria (state Total Coliform Rule)	(In a month)	0	1 positive monthly sample ^(a)	0	Naturally present in the environment					
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste					
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(b)	0	Human and animal fecal waste					

⁽a) Two or more positive monthly samples is a violation of the MCL

⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	N o. of Sc h oo ls R eq	Typical Source of Contaminant		

							ue sti n g L ea d S a m pl in g	
Lead (ppb)	8/9/17 8/16/17 8/22/17	5	ND	0	15	0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/9/17 8/16/17 8/22/17	5	0.064	0	1.3	0.3	N ot ap pli ca bl e	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	TABLE 3	- SAMPLING	RESULTS FOR	SODIUM AND HA	RDI	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	P H G (M C L G	Typical Source of Contaminant
Sodium (ppm)	8/16/17	26	25-28	None	N o n e	Salt present in the water and is generally naturally occurring
Hardness (ppm)	8/16/17	160	160	None	N o n e	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	ECTION O	F CONTAMIN	ANTS WITH A <u>I</u>	<u>PRIMARY</u> DRINK	ING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHGG (MCLG) MRDLGG	Typical Source of Contaminant
Arsenic	6/28/17, 7/13/17	1.66	ND – 3	10	. 0	Erosion of natural deposits; runoff from orchards; glass and electronics

Consumer Confidence Report

Page 4 *of* 6

					0 4	production wastes.
Chlorine	January – December	1.48	0.3 – 3.2	4.0	4. 0	Drinking water disinfectant added for treatment.
Fluoride - ppm	6/28/17	ND	ND	2		Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Haloacetic Acids (five) (HAA5) (ppb)	8/16/17	25	25	60	N A	By-product of drinking water disinfection.
TTHM's (Total Trihalomethanes) (ppb)	8/16/17	37	37	80	N A	By-product of drinking water disinfection.

TABLE 5 – DETE	CTION OF	CONTAMINA	NTS WITH A <u>SE</u>	<u>CONDARY</u> DRI	IKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	P H G (M C L G	Typical Source of Contaminant
Chloride (ppm)	8/16/17	46	41-51	500	N A	Runoff/leaching from natural deposits; seawater influence.
Color - units	6/28/17	13	ND - 30	15	n/ a	Naturally-occurring organic materials.
*Iron - ppb	2-6-19 6-24-19 7-23-19 10-8-19	11,812	1,000 – 31,000	300	n/ a	Leaching from natural deposits; industrial wastes.
*Manganese - ppb	2-6-19 6-24-19 7-23-19 10-8-19	337	250 - 410	50	n/ a	Leaching from natural deposits.
Specific Conductance (uS/cm)	6/12/18	450	400 - 500	1600	n/ a	Substances that form ions when in water; seawater influence
Sulfate (ppm)	8/16/17	56	51 – 62	500	n/ a	Runoff/ leaching from natural deposits; Industrial wastes.
Total Dissolved Solids (TDS) - ppm	8/16/17	291	270 - 320	1000	n/ a	Runoff/ leaching from natural deposits
Turbidity – NTU	6/28/17	5.66	0.52 - 12	5.0	n/ a	Soil runoff.
*Zinc - ppm	8/16/17	13.36	1.2 – 23	5	n/ a	Runoff/ leaching from natural deposits; Industrial wastes.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hillview Water Company, Inc. is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATIO	N OF A MCL, MRDL, AL	, TT, OR MONITORING	AND REPORTING REQ	UIREMENT
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
Did not report routine biological water sample.	Missed routine biological water sample.	September 2019	Routine samples were taken before and after the mon of September and were negative.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful bacteria may be present.
*Iron - ppb	Leaching from natural deposits; Industrial wastes.	Duration unknown	A plan for mitigating the secondary drinking water standard for iron is in progress. Sequestration will be used to meet the standard. The project is in progress. Completion expected in 2021.	Iron was found at levels that exceeded the secondary MCL of 300ug/L. The iron MCL was set to protect you against unpleasant aesthetics effects (e.g. color, taste and odor) and the staining of plumbing fixtures (e.g. tubs and sinks) and clothing while washing. The high levels are due to leaching of natural deposits.
*Manganese (ppb)	Leaching from natural deposits.	Duration unknown	A plan for mitigating the secondary drinking water standard for manganese is in progress. Sequestration will be used to meet the standard. The project is in progress. Completion expected in 2021.	The manganese MCL is a secondary drinking water standard and no Health Effects Language is provided for the MCL of 50 ppb, only for the notification level of 500 ppb.
*Zinc	Runoff/leaching from natural deposits; industrial wastes.	Duration unknown	Zinc is a secondary drinking water standard and Hillview will continue to monitor the zinc levels.	Zinc is a secondary drinking water standard and no Health Effect Language is provided.

COARSEGOLD

PWS ID: CA2010013

WE KEEP LIFE FLOWING™

A message from California American Water's President

Rich SvindlandPresident
California American Water

Dear California American Water Customer,

Our top priority is providing safe, reliable drinking water to our more than 690,000 people. Most people take their water quality for granted in the United States and expect clean water to be always available. I believe this expectation is affirmation of the hard work and investment we and other water utilities across the country have made in providing this essential service.

I am pleased to share with you our 2020 Consumer Confidence Report, which reflects the hard work and dedication of our employees who work to provide high quality drinking water. During the COVID-19 public health emergency, California American Water activated its business continuity plans to ensure our ability to provide reliable, high quality service to our customers.

According to the U.S. Environmental Protection Agency review of current research, the risk to water supplies from COVID – 19 is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards.

Across California, we conducted approximately 650 different tests on more than 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$68 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service. California American Water also offers a variety of Customer Assistance Programs and Conservation services to help our customers. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report as It provides details about the source and quality of your drinking water, using data from water quality testing conducted for your local system between January and December 2020.

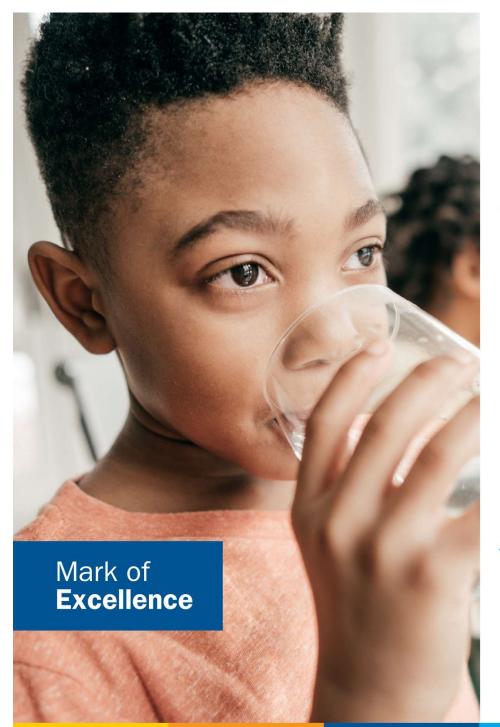
This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.

Spiral Chulm

Rich Svindland California American Water



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

A message from our President	
What is a Consumer Confidence Report	3
Mark of Excellence	
About Your Drinking Water Supply	
What are the Sources of Contaminants?	
Protecting Your Drinking Water Supply	
About Lead	
Important Information About Your Water • PFOA/PFAS	
Water Quality Results	1
Definitions of Terms Used in Document	1
Water Quality Results: Detailed Charts	12-1
About Us	1
Contact Us	1

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.

WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

WHERE YOUR WATER COMES FROM

The Coarsegold water system is served by hard rock wells which draw from underground fractures in the foothills of rural Madera County.

An assessment of the drinking water sources in the Coarsegold system was completed in January 2002. Although not associated with any detected contaminants, the sources are considered most vulnerable to the following: transportation corridors- roads/streets; wellswater supply.

A copy of the completed assessment may be viewed at: California American Water, 4701 Beloit Drive, Sacramento, CA 95838.

QUICK FACTS ABOUT THE COARSEGOLD SYSTEM

Water source: Groundwater wells

Disinfection treatment:
California American Water uses chlorination for disinfection to maintain water quality in the distribution system.

Groundwater

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

b	
Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

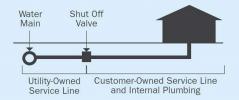
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Victoria Kunda at 916-568-4278.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

Important Information About **Drinking Water**

PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industrial applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.

In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA in drinking water). In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.

This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.

Lauren Weinrich

Principal Scientist, Water Research and Development

Water Quality **Results**

WATER QUALITY STATEMENT

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

OTHER INFORMATION

In 2020 iron, manganese, color and turbidity were found at levels that exceed their respective secondary MCLs (300 ppb for Iron, 50 ppb for Manganese, 15 Units for Color, and 5 Units for Turbidity). The high levels of iron and manganese are due to leaching of natural deposits. High levels of color and turbidity is due to the iron and manganese interference. A plan for mitigating the secondary drinking water standard for iron, manganese, color and turbidity is in progress. California American Water is in the process of developing iron and manganese removal water treatment plan. The removal of iron and manganese will address color and turbidity as well. Completion expected in 2022.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

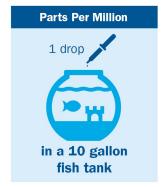
Primary Drinking Water Standard (**PDWS**): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

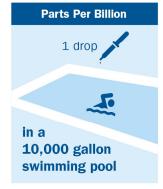
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

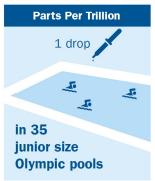
RAA: Running Annual Average

Secondary Maximum Contaminant Level (**SMCL**): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

Water Quality **Results**

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The detections of our monitoring are reported in the following tables. While most monitoring was conducted in 2020, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting the tables below, see the "Definition of Terms" on the previous page. Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

	LEAD AND COPPER MONITORING PROGRAM - At least 5 tap water samples collected at customers' taps every three years									
Substance (with units)	Year Sampled	Compliance Achieved	MCLG	Action Level (AL)	90 th Percentile	No. of Homes Sampled	Homes Above Action Level	Typical Source		
Lead (ppb)	2020	Yes	0.2	15	0.01	10	0	Corrosion of household plumbing systems.		
Copper (ppm)	2020	Yes	0.3	1.3	0.208	10	0	Corrosion of household plumbing systems.		

	DISINFECTION BYPRODUCTS - Collected in the Distribution System											
Substance (with units)	Vear Sampled MCLG MCL Typical Source											
Total Trihalomethanes (TTHMs) (ppb)	2018	Yes	NA	80	27	NA	By-product of drinking water disinfection.					
Haloacetic Acids (HAAs) (ppb)	2020	Yes	NA	60	16	NA	By-product of drinking water disinfection.					

NOTE: Compliance is based on the running annual average at each location. The Highest Compliance Result reflects the highest average at any location and the Range Detected reflects all samples from this year used to calculate the running annual average.

DISINFECTANTS - Collected in the Distribution System									
Substance Year Compliance MRDLG MRDL Average Amount Range Typical Source (with units) Sampled Achieved									
Distribution System Chlorine Residual (ppm)	2020	Yes	4	4	1.1	0.83 to 1.6	Water additive used to control microbes.		

PRIMARY REGULATED SUBSTANCES									
Substance (with units)	Year Sampled	Compliance Achieved	MCL	PHG (MCLG)	Average Amount Detected	Range Low-high	Typical Source		
Arsenic (ppb)	2020	Yes	10	0.004	2.8	2.0 to 3.3	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes		

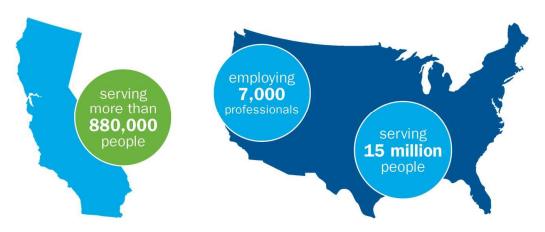
	SECONDARY REGULATED SUBSTANCES										
Substance (with units)	Year Sampled	Compliance Achieved	SMCL ¹ (NL)	Average Amount Detected	Range Low-high	Typical Source					
Chloride (ppm)	2020	Yes	500	55	50 to 61	Erosion or leaching of natural deposits					
Specific Conductance (umhos/cm)	2020	Yes	1600	535	510 to 560	Substances that form ions when in water; Seawater influence					
Iron (ppb)	2020	No	300	7396	770 to 15000	Erosion of natural deposits; leaching from wood preservatives					
Manganese (ppb)	2020	No	50 (500)	211	80 to 337	Leaching from natural deposits					
Color (units)	2020	No	15	26	ND to 60	Naturally occurring organic materials					
Odor (units)	2020	Yes	3	1.4	ND to 2.5	Naturally occurring organic materials					
Sulfate (ppm)	2020	Yes	500	61	51 to 74	Runoff/leaching from natural deposits; Industrial wastes					
Total Dissolved Solids (ppm)	2020	Yes	1000	333	310 to 340	Runoff/leaching from natural deposits					
Turbidity (NTU)	2020	No	5	9.2	0.3 to 25	Soil runoff					
Zinc (ppm)	2020	Yes	5.0	0.19	0.14 to 0.24	Runoff/leaching from natural deposits; industrial wastes					

^{1 -} Substances with Secondary MCLs do not have MCLGs; these limits are primarily established to address aesthetic concerns

		OTHER SUBSTANCES O	F INTEREST	
Substance (with units)	Year Sampled	Average Amount Detected	Range Low-high	Comments
Total Alkalinity as CaCO3 (ppm)	2020	108	100 to 120	
Calcium (ppm)	2020	55	51 to 58	
Magnesium (ppm)	2020	8.3	7.5 to 9.0	
рН	2020	7.2	6.8 to 7.4	
Sodium (ppm)	2020	28	26 to 29	"Sodium" refers to the salt present in the water and is generally naturally occurring.
Total Hardness as CaCO3 (ppm)	2020	168	160 to 180	"Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring
Total Hardness as CaCO3 (grains/gallon)	2020	9.8	9.4 to 10.5	
Aggressive Index	2020	11	NA	

UNREGULATED CONTAMINANT MONITORING

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is necessary. Every five years, the EPA issues a new list of no more than 30 unregulated contaminants to be monitored.


	ADDITIONAL WATER QUALITY PARAMETERS OF INTEREST												
Parameter (with units)	Year Sampled	PHG (NL)	Average Result	Range Low-high	Typical Source/Notes								
Strontium (ppb)	2020	N/A	200	NA	Naturally-occurring elemental metal; largely used in aluminum alloy production. Essential dietary element.								
Boron (ppm)	2020	(1)	0.26	ND to 0.69	Based on studies in laboratory animals, the babies of some pregnant women who drink water containing boron in excess of the Notification Level may have an increased risk of developmental effects.								

About Us

California American Water, a subsidiary of American Water, provides high-quality and reliable water and/or wastewater services to more than 880,000 people. For more information, visit **californiaamwater.com** and follow us on Twitter, Facebook, Instagram and YouTube.

With a history dating back to 1886, **American Water** (NYSE: AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,000 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help make sure we keep their lives flowing.

CALIFORNIA AMERICAN WATER FACTS AT A GLANCE

- COMMUNITIES SERVED
 77 communities in
 10 counties
- **PEOPLE SERVED**Approx. 880,000 people
- EMPLOYEES 322
- SYSTEM DELIVERY
 122 million gallons per day (MGD) of water is produced and treated
- MILES OF PIPELINE
 2,254 miles of water pipeline
 and 48.5 miles of wastewater pipe
- STORAGE 122 water storage facilities

How to **Contact Us**

If you have any questions about this report, your drinking water, or service, please contact California American Water's Customer Service Center Monday to Friday, 7 a.m. to 7 p.m. at 1-888-237-1333.

WATER INFORMATION SOURCES

California American Water www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW:

www.waterboards.ca.gov/drinking water/programs/index.shtml

United States Environmental Protection Agency (USEPA): www.epa.gov/safewater

Safe Drinking Water Hotline: (800) 426-4791

Centers for Disease Control and Prevention: www.cdc.gov

American Water Works Association: www.awwa.org

Water Quality Association: www.wqa.org

National Library of Medicine/National Institute of Health:

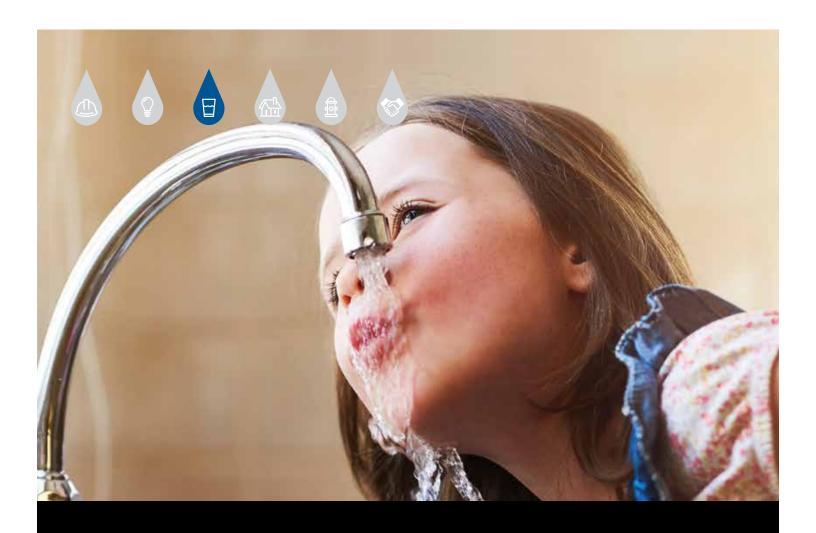
www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at 1-888-237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al 1-888-237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm 1-888-237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電 1-888-237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया 1-888-237-1333 र हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону 1-888-237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa 1-888-237-1333.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số 1-888-237-1333.

2018 ANNUAL WATER QUALITY REPORT

DUNNIGAN | PWS ID: 5700712

WE KEEP LIFE FLOWING™

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having easy access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2018 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who ensure high-quality drinking water.

QUALITY: We have rigorous safeguards in place to ensure the water we provide to you meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 652 different tests on 25,239 water samples for 2,994 constituents last year. We are proud and pleased to confirm that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment ensures and maintains the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high-quality water service that remains an exceptional value, costing customers about a penny per gallon.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2018.

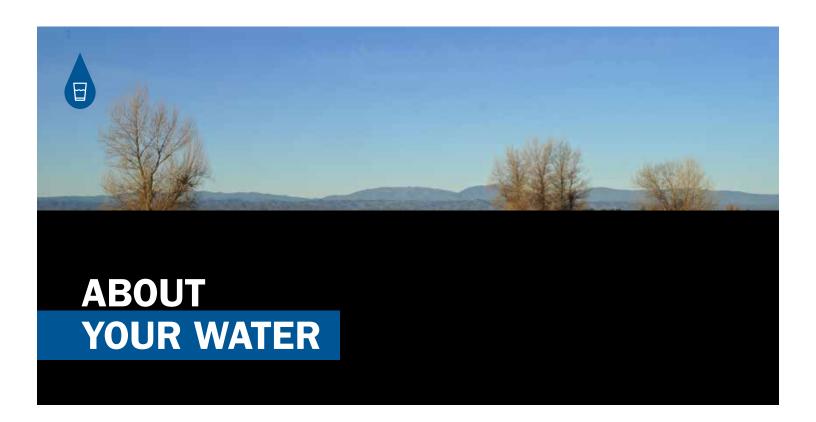
Sincerely.

RICHARD SVINDLAND

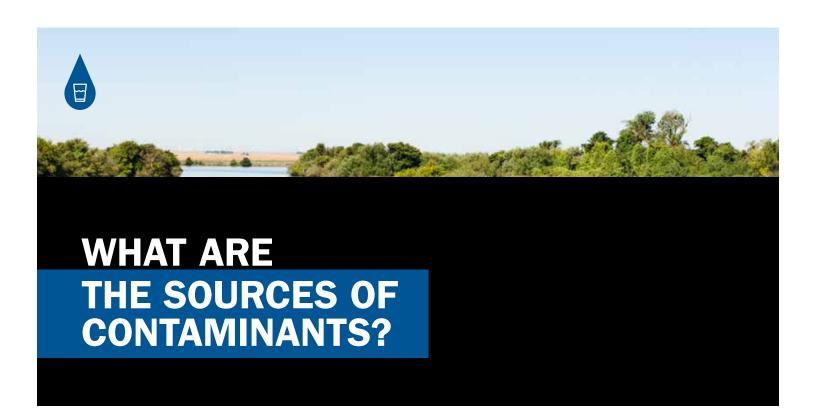
President

Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2018. We are pleased to tell you that our compliance with state and federal drinking water regulations remains exemplary. As in the past, we are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)


California American Water, a subsidiary of American Water (NYSE: AWK), provides high-quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

The Consumer Confidence Report (CCR) is an annual water quality report containing data that California American Water and all associated water purveyors collected during the past year. CCRs let consumers know what contaminants, if any, are in their drinking water as well as any related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.


In 2018, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from our nationally recognized water quality laboratory and local commercial laboratories; all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

The Dunnigan system is served by wells that pump groundwater from aquifers in the area. These wells are located within the geographic region of our Dunnigan service area. The water supplied is chlorinated to ensure that it meets bacteriological quality standards. The water supply is distributed for residential and commercial use.

WATER QUALITY STATEMENT

Last year the Dunnigan system did not violate any federal water quality standards. There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017. In August 2018, the hexavalent chromium removal treatment facility commenced its operation. California American Water vigilantly safeguards its water supplies and continues to work on treatment for the Dunnigan system.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS.

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES,

which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS,

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS.

which can be naturally occurring or may be the result of oil and gas production and mining activities.

FLUORIDE

Fluoride is a naturally occurring substance. It can be present in drinking water from two sources:

- **1. By nature** when groundwater comes into contact with fluoride-containing minerals naturally present in the earth; or
- 2. By a water purveyor through addition of fluoride to the water they are providing in the distribution system.

In the Dunnigan system, all fluoride in the water is from naturally occurring minerals and the concentrations are well below the limits for contaminants in drinking water set by the USEPA and State Water Resources Control Board, Division of Drinking Water.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking.

If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

TESTING LEAD IN PUBLIC SCHOOLS

California American Water has not received requests to test drinking water for lead from school districts, since there are no schools in Dunnigan service area.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (μS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years years

HOW TO READ THIS TABLE

California American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- **1** Starting with a **Substance**, read across.
- 2 Year Sampled is usually in 2018 or year prior.
- **3 MCL** shows the highest level of substance (contaminant) allowed.
- **MCLG** is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Major Sources in Drinking Water tells where the substance usually originates.

Unregulated substances are measured, but maximum allowed contaminant levels have not been established by the government.

Water Quality Results

Regulated Substances

				After Treatment implementation ¹			Prior To Treatment implementation ¹					
Substance (Units) Year Sampled		MCL	PHG (MCLG)	Average Amount	Range		Average Amount	Range		Violation	Major Sources in Drinking Water	
				Detected	Low	High	Detected	Low	High			
Arsenic (ppb)	2016, 2018	10	0.004	2.4	NA		2.0	NA		No	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes	
Barium (ppm)	2016, 2018	1	2	0.2	NA		0.2	NA		No	Discharges of oil drilling wastes and from metal refineries; Erosion of natural deposits	
Chromium (ppb)	2018	50	(100)	0	NA		43.6	43 47		No	Discharge from steel and pulp mills; Erosion of natural deposits	
Fluoride (ppm) (naturally occurring)	2017, 2018	2	1	0.19	NA		0.38	N	NA.	No	Erosion of natural deposits; discharge from fertilizer and aluminum factories	
Nitrate as Nitrogen (ppm)	2018	10	10	1.7	ND 2.6		2.5	2.2	2.8	No	Runoff and leaching from fertilizer use; Leaching from septic tanks and sewage; Erosion of natural deposits	
Hexavalent Chromium ² (ppb)	2018	N/A	N/A	ND	ND	ND ND		37 42		No ²	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits	

¹On 8/3/2018 Hexavalent Chromium removal treatment plant commenced operation to treat 100% of water supplyed to the Dunnigan water system.

Distribution System Monitoring

Diotinoution Ojotom	Statistical Officeria monitoring											
Chlorine (ppm)	2018	MRDL=4.0	MRDLG=4.0	0.90	0.5 - 1.0		Treatment chemical used to disinfect drinking water					
Haloacetic Acids (ppb) ³	2018	60	N/A	ND	N/A	No	By-product of drinking water disinfection					
Total Trihalomethanes (TTHM) (ppb) ³	2018	80	N/A	1.3	N/A	No	By-product of drinking water disinfection					

³The "Average Amount Detected" is the Highest Running Annual Average.

Secondary Substance

			After Treatment Implemented ¹			Prior Treatment Implementation ¹					
Substance (Units) Ye	Year Sampled	SMCL ⁴	Average	Range		Average	Range		Violation	Major Sources in Drinking Water	
		SMOL	Amount Detected	Low	High	Amount Detected	Low	High			
Chloride (ppm)	2016, 2018	500	48	47	49	50	NA NA		No	Runoff/leaching from natural deposits	
Specific Conductance (mmhos/cm)	2016-2018	1600	617	590	640	678	660 690		No	Substances that form ions when in water; Seawater influence	
Sulfate (ppm)	2016	500	1.0	1.0	1.1	2.5	N	NA NA		Runoff/leaching from natural deposits; industrial wastes	
Total Dissolved Solids (ppm)	2016-2018	1000	330	320	340	360	350	350 370		Runoff/leaching from natural deposits; Industrial wastes	
Turbidity (NTU)	2016-2018	5	0.2	ND	0.3	0.1	ND 0.2		No	Soil runoff	
Boron (ppm) ⁵	2018	1 ⁶	0.15	N	iA	N/A	Ŋ	/A	No		

^{*}Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. These contaminants are not considered to present a risk to human health at the SMCL.

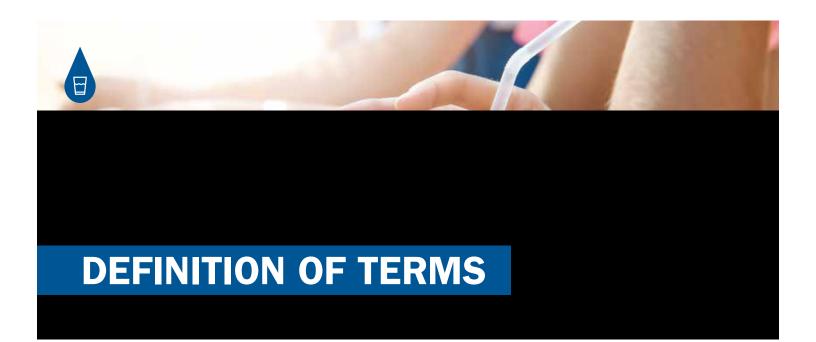
Lead and Copper (tap water samples)

Substance (Units)	Year Sampled	Action Level	PHG (MCLG)	Number of Samples	Amount Detected (90th Percentile)	Hornes Above Action Level	Violation	Major Sources In Drinking Water
Copper (ppm)	2017	1.3	0.3	8	0.00	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2017	15	0.2	8	0	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Discharges from industrial manufacturers

Additional Water Quality Parameters of Interest

This table shows average levels of additional water quality parameters that are often of interest to consumers. The averages shown are calculated from the levels detected at each source used to supply water is 2018. Values may vary from day-to-day. There are no health-based limits for these substance in drinking water.

Substance (Units)			After Treatment Impleme	entation ¹	Prior To Treatment Implementation ¹			
	Year Sampled	Average Amount	Ra	nge	Average Amount Detected	Ra	Range	
		Detected	Low	High	Average Amount Detected	Low	High	
Total Alkalinity as CaCO3 (ppm)	2016 - 2018	263	250 270		266	260	270	
Calcium (ppm)	2016 - 2018	29	27 31		31	30	33	
Magnesium (ppm)	2016 - 2018	40	NA NA		46	43	51	
pH	2016 - 2018	7.7	7.6	7.9	8.2	NA NA		
Silica (ppm)	2016, 2018	26	N	IA .	31 NA		IA	
Sodium (ppm)	2016, 2018	33	NA NA		35	NA		
Total Hardness as CaCO3 (ppm)	2016 - 2018	240	220 270		260	250	280	
Total Hardness as CaCO3 (grains/gallon)	2016 - 2018	14.0	12.9	15.8	15.2	14.6	16.4	


[&]quot;Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.

²There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017.

Sased on studies in laboratory animals, the babies of some pregnant women who drink water containing boron in excess of the Notification Level may have an increased risk of developmental effects.

⁶Notification Level, not a secondary MCL.

[&]quot;Sodium" refers to the salt present in the water and is generally naturally occurring.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

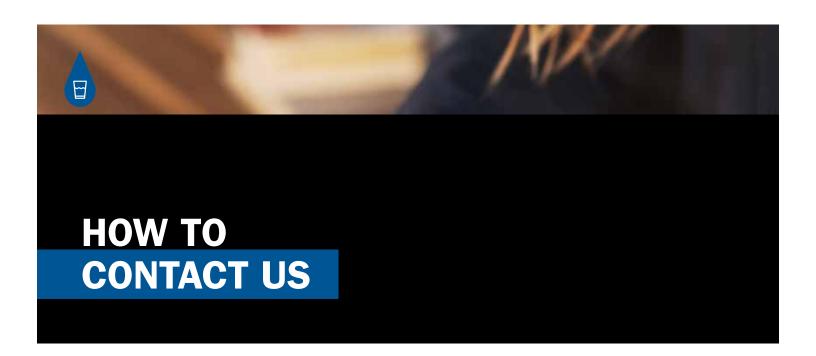
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board

www.swrcb.ca.gov

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

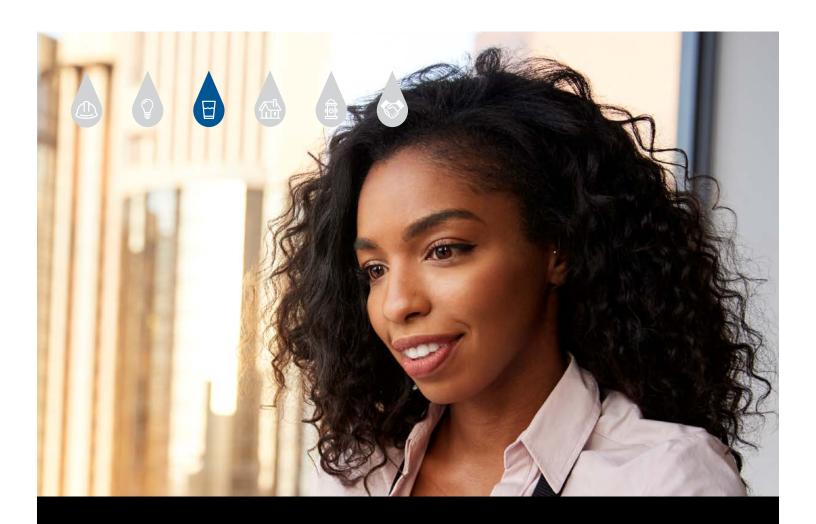
National Library of Medicine/National Institute of Health

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.


這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa $(888)\ 237-1333$.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

2019 ANNUAL WATER QUALITY REPORT

DUNNIGAN | PWS ID: 5700712

WE KEEP LIFE FLOWING™

RICHARD SVINDLAND President

A Message from California American Water President RICHARD SVINDLAND

Dear California American Water Customer,

Having access to safe, clean water is something that can be easily taken for granted. At California American Water, our top priority is providing safe, reliable drinking water to our more than 690,000 customers.

I am pleased to share with you our 2019 Consumer Confidence Report, which is a testament to the hard work and dedication of our employees who work to provide high quality drinking water.

During the COVID-19 public health emergency, California American Water activated business continuity plans to strengthen our ability to provide reliable, high quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers.

According to the U.S. Environmental Protection Agency (USEPA) based on current research, the risk to water supplies is low. The USEPA has also relayed that Americans can continue to use and drink water from their tap as usual.

California American Water remains committed to the delivery of safe, reliable water. That includes operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have rigorous safeguards in place to help provide water to you that meets or surpasses increasingly stringent water quality standards. Across California, we conducted approximately 650 different tests on over 25,000 water samples for nearly 3,000 constituents last year. We are proud and pleased to confirm that those tests showed that we met every primary and secondary state and federal water quality standard.

SERVICE: Last year, we invested more than \$74 million in water infrastructure in the California communities we serve. This investment helps maintain the safety and reliability of the facilities and technology needed to draw, treat, and distribute water.

VALUE: While costs to provide water service continue to increase across the country, our investments help us provide high quality water service that remains an exceptional value for such an essential service.

We are proud to continue to supply water that meets or surpasses all state and federal water quality standards. If you have any questions or concerns, you can contact us by phone, email, online at www.californiaamwater.com, or in person at our local Customer Center. Please take the time to review this report. It provides details about the source and quality of your drinking water, using data from water-quality testing conducted for your local system between January and December 2019.

Sincerely,

RICHARD SVINDLAND

June Clouder

President

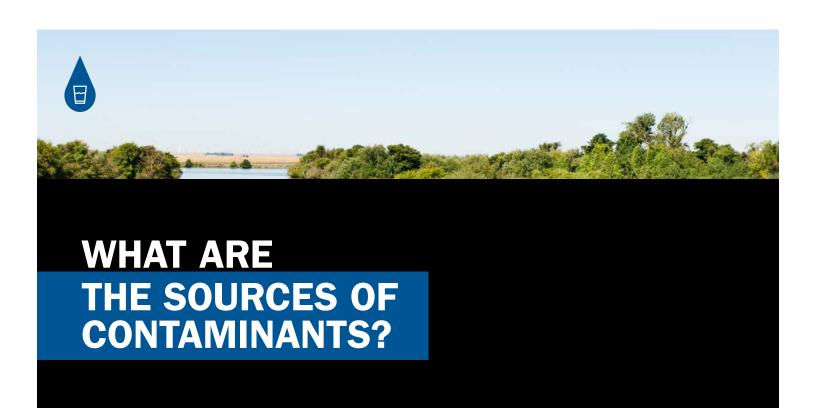
Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). This CCR covers compliance testing completed through December 2019. As in the past, we are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

ABOUT CALIFORNIA AMERICAN WATER (CAW) AND AMERICAN WATER (AW)

California American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), provides high quality and reliable water and/or wastewater services to more than 690,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

WHAT IS A CONSUMER CONFIDENCE REPORT (CCR)?

The CCR is an annual water quality report containing data that California American Water and all associated water suppliers collected during 2019. CCRs let consumers know what contaminants, if any, are in their drinking water as well as related health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.


In 2019, we collected numerous samples at various sampling points in your water system. The water quality data presented is a combination of data compiled from American Water's nationally recognized water quality laboratory and local commercial laboratories, all certified in drinking water testing by the State Board's Division of Drinking Water. If you have any questions about this report or your drinking water, please contact our Customer Service Center at (888) 237-1333.

The Dunnigan system is served by wells that pump groundwater from aquifers in the area. These wells are located within the geographic region of our Dunnigan service area. California American Water uses a strong-base ion exchange (SBA-IX) for hexavalent chromium removal, and chlorination of the water for bacteriological quality. The water supply is distributed for residential and commercial use.

WATER QUALITY STATEMENT

Last year the Dunnigan system did not violate any federal water quality standards. There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017. California American Water vigilantly safeguards its water supplies and continues to work on treatment for the Dunnigan system.

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity and even radioactive material. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board set regulations limiting the amount of certain contaminants in water provided by public water systems. Contaminants that may be present in source water include:

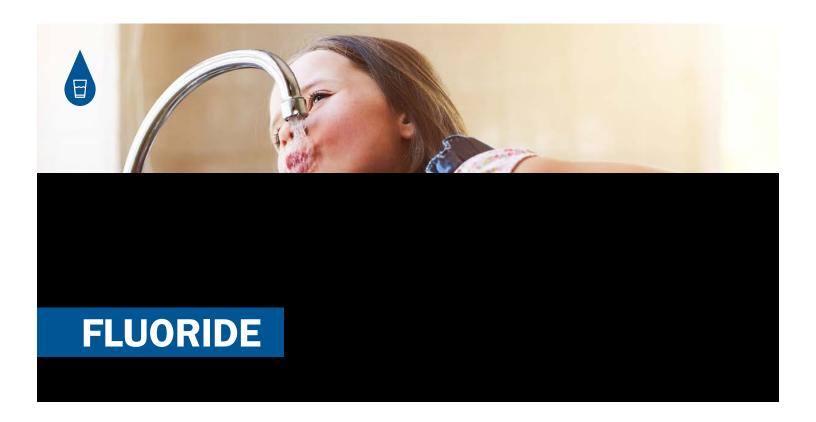
ORGANIC CHEMICAL CONTAMINANTS

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

INORGANIC CONTAMINANTS

such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

PESTICIDES AND HERBICIDES


which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

MICROBIAL CONTAMINANTS

such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

RADIOACTIVE CONTAMINANTS

which can be naturally occurring or may be the result of oil and gas production and mining activities.

FLUORIDE

Fluoride is a naturally occurring substance. It can be present in drinking water from two sources:

- **1. By nature** when groundwater comes into contact with fluoride-containing minerals naturally present in the earth; or
- 2. By a water purveyor through addition of fluoride to the water they are providing in the distribution system.

In the Dunnigan system, all fluoride in the water is from naturally occurring minerals and the concentrations are well below the limits for contaminants in drinking water set by the USEPA and State Water Resources Control Board, Division of Drinking Water.

LEAD

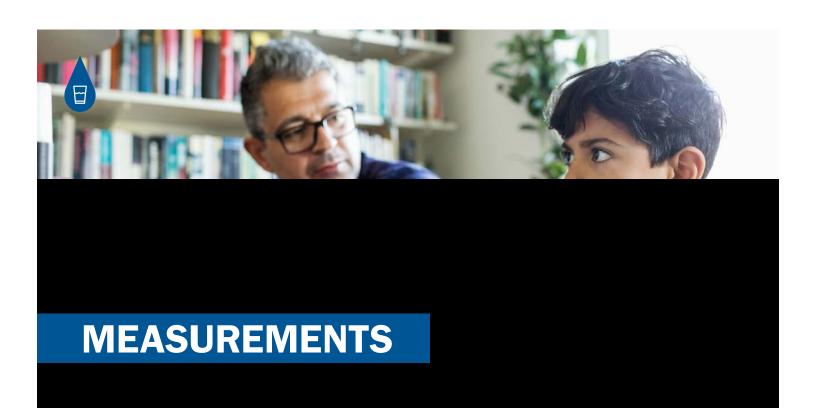
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

There are steps that you can take to reduce your household's exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. For more information, please review our Lead and Drinking Water Fact Sheet at www.amwater.com/caaw/water-quality/lead-and-drinking-water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

PFOA/PFOS Monitoring

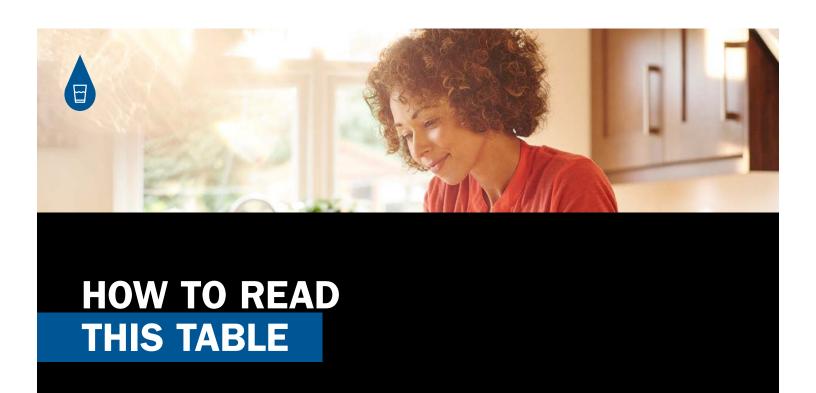
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are fluorinated organic chemicals that are part of a larger group of chemicals referred to as per- and poly-fluoroalkyl substances (PFASs). PFOS and PFOA have been extensively produced and studied in the United States. They have been used in consumer products such as carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) designed to be waterproof, stain-resistant or non-stick. In addition, they have been used in fire-retarding foam and various industrial processes.


Exposure to PFOA and PFOS over certain levels may result in adverse health effects, including developmental effects to fetuses during pregnancy or to breastfed infants (e.g., low birth weight, accelerated puberty, skeletal variations), cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production and immunity), thyroid effects and other effects (e.g., cholesterol changes). While people are exposed to PFOS and PFOA largely through food, food packaging, consumer products, and house dust, the exposure through drinking water has become an increasing concern due to the tendency of PFASs to accumulate in groundwater. In 2019, Division of Drinking Water (DDW) established Notification Levels (NLs) at 6.5 ppt for PFOS and 5.1 ppt for PFOA in drinking water.

California American Water conducted voluntary PFOA/PFOS monitoring in the source water of Dunnigan water system in 2019. PFOA and PFOS were not detected in the water above the detection limits for the testing.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by microbial contaminants are available through the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water is sampled and tested consistently throughout the year to ensure the best possible quality. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)
- Grains per gallon (grains/gal) A measurement of water hardness often used for sizing household water softeners. One grain per gallon is equal to 17.1 mg/L of hardness.
- MicroSiemens per centimeter (µS/cm) A measurement of a solution's ability to conduct electricity.
- Nephelometric Turbidity Units (NTU) A measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.
- PicoCuries per liter (pCi/L) A measurement of radioactivity in water.

PARTS PER MILLION: PARTS PER BILLION: PARTS PER TRILLION:

1 second 1 second 1 second in 32 years in 32,000 years

1 second 1 second 32,000 days years years

California American Water conducts extensive monitoring to determine if your water meets all water quality standards. The results of our monitoring are reported in the following tables. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting this table, see the "Definition of Terms" section.

- 1 Starting with a **Substance**, read across.
- **2** Year Sampled is usually in 2019 or year prior.
- 3 MCL/MRDL/Action Level shows the highest level of substance (contaminant) allowed.
- 4 MCLG/PHG/MRDLG is the goal level for that substance (this may be lower than what is allowed).
- **5** Average Amount Detected represents the measured amount (less is better).
- **6** Range tells the highest and lowest amounts measured.
- **7** A **No** under **Violation** indicates government requirements were met.
- 8 Typical Source tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

2019 Annual Water Quality Results | Dunnigan

Regulated Substances (Measured on the Water Leaving the Treatment Facility and/or the Source)

Substance (Units)	Substance (Units) Year Sampled* MCL		PHG (MCLG)	Average Amount	Ra	nge	Violation	Major Sources in Drinking Water
Substance (onits)	rear Sampleu*	MOL	PHG (MCLG)	Detected	Low	High	violation	major sources in Dilliking Water
Arsenic (ppb)	2019	10	0.004	2.3	2.0	2.6		Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes
Barium (ppm)	2019	1	2	0.2	N	IA		Discharges of oil drilling wastes and from metal refineries; Erosion of natural deposits
Fluoride (ppm) (naturally occurring)	2019	2	1	0.3	0.3	0.4	No	Erosion of natural deposits; discharge from fertilizer and aluminum factories

Distribution System Monitoring: Disinfection By-products, Disinfectant Residuals, and Disinfection By-products Precursors

Substance (Units)	Year Sampled	MCL/MRDL	MPDLC	MRDLG Average Amount Detected	Ra	nge	Violation	Major Sources in Drinking Water
Substance (Units)	rear Sampleu	MOL/ MINDL	WINDLG		Low	High		
Chlorine (ppm)	2019	MRDL=4.0	4.00	0.89	0.8	0.9	No	Treatment chemical used to disinfect drinking water
Haloacetic Acids (ppb) ¹	2019	60	N/A	ND	N,	N/A		By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb) ¹	2019	80	N/A	ND	N/A		No	By-product of drinking water disinfection

¹ TTHM/HAA5 - Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants. Trihalomethanes: Bromodichloromethane (zero); bromoform (zero); chloroform (0.07mg); dibromochloromethane (0.06 mg/L). Haloacetic Acids: Dichloroacetic Acid (zero); Trichloroacetic Acid (0.02mg/L). Monochloroacetic Acid (0.07mg/L), Bromoacetic Acid and Dibromoacetic Acid are regulated with this group but have no MCLGs. The "Average Amount Detected" is the Highest Running Annual Average.

Secondary Substances

Secondary Substances									
Substance (Units)	Year Sampled	(ear Sampled SMCL		Ra	nge	Violation			
Substance (Units)	rear Sampled	SMCL	Amount Detected	Low	High	violation	Major Sources In Drinking Water		
Chloride (ppm)	2019	500	56	53	59	No	Runoff/leaching from natural deposits		
Specific Conductance (mmhos/cm)	2019	1600	655	650	660	I No	Substances that form ions when in water; Seawater influence		
Sulfate (ppm)	2019	500	2.8	2.6	3.1	No	Runoff/leaching from natural deposits; industrial wastes		
Total Dissolved Solids (ppm)	2019	1000	365	360	370	No	Runoff/leaching from natural deposits; Industrial wastes		
Turbidity (NTU)	2019	5	0.3	ND	0.5	No	Soil runoff		
Boron (ppm) ²	2019	1 ³	0.14	0.14	0.15	No			
Vanadium (ppb) ⁴	2019	50 ³	11	N/A		No	Naturally Occuring Metal		

Based on studies in laboratory animals, the babies of some pregnant women who drink water containing boron in excess of the Notification Level may have an increased risk of developmental effects.

Lead and Copper (tap water samples)

Substance (Units)	Year Sampled	Action Level	PHG (MCLG)	Number of Samples	Amount Detected (90thPercentile)	Homes Above Action Level	Violation	Major Sources In Drinking Water
Copper (ppm)	2017	1.3	0.3	8	ND	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead (ppb)	2017	15	0.2	8	ND	0	No	Internal corrosion of household plumbing systems; Erosion of natural deposits; Discharges from industrial manufacturers

³Notification Level, not a secondary MCL.

The babies of some pregnant women who drink water containing vanadium in excess of the Notification Level may have an increased risk of developmental effects, based on studies in laboratory animals.

Additional Water Quality Parameters of Interest

This table shows average levels of additional water quality parameters that are often of interest to consumers. The averages shown are calculated from the levels detected at each source used to supply water is 2019 and in the distribution system. Values may vary from day-to-day. There are no health-based limits for these substance in drinking water.

Substance (Units)	Year Sampled	Average Amount Detected	Range			
Substance (units)	rear Sampieu	Avoiago Airibuilt Dotoctou	Low	High		
Total Alkalinity as CaCO3 (ppm)	2019	270	260	280		
Bicarbonate Alkalinity (ppm)	2019	270	260	280		
Calcium (ppm)	2019	32	31	33		
Magnesium (ppm)	2019	46	42	50		
рН	2019	7.4	7.0	7.7		
Silica (ppm)	2019	30		NA		
Sodium (ppm)	2019	34	33	34		
Total Hardness as CaCO3 (ppm)	2019	263	250	270		
Total Hardness as CaCO3 (grains/gallon)	2019	15	15	16		

[&]quot;Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.

Additional Monitoring - In addition to the parameters in this table, other parameters were monitored for, including regulated pesticides, herbicides, petroleum by-products and metals. None of those parameters were detected in the water. If you have any questions about this report or your drinking water, please call Customer Service at 1-888-237-1333.

[&]quot;Sodium" refers to the salt present in the water and is generally naturally occurring.

^{*} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Action Level (AL): The concentration of a contaminant, which, pH: A measurement of acidity, 7.0 being neutral. if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set parts per million (ppm): One part substance per million as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (µmhos/cm): A measure of electrical conductance.

NA: Not applicable N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU): Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

picocuries per liter (pCi/L): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

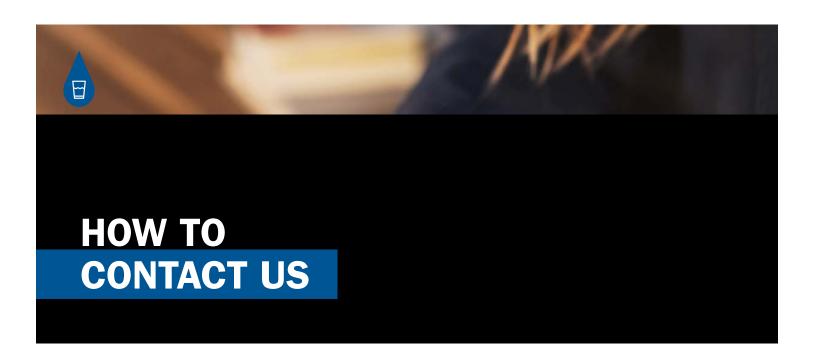
Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

RAA: Running Annual Average

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or USEPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

%: Percent

If you have any questions about this report, your drinking water, or service, please call California American Water's Customer Service toll free at (888) 237-1333.

WATER INFORMATION SOURCES

California American Water

www.californiaamwater.com

State Water Resources Control Board (State Board), Division of Drinking Water (DDW)

www.waterboards.ca.gov/drinking_water/programs/index.shtml

United States Environmental Protection Agency (USEPA)

www.epa.gov/safewater

Safe Drinking Water Hotline

(800) 426-4791

Centers for Disease Control and Prevention

www.cdc.gov

American Water Works Association

www.awwa.org

Water Quality Association

www.wqa.org

National Library of Medicine/National Institute of Health

www.nlm.nih.gov/medlineplus/drinkingwater.html

This report contains important information about your drinking water. Translate it, or speak with someone who understands it at (888) 237-1333.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien al (888) 237-1333.

Ntawm no yog ib co lus qhia tseem ceeb heev txog koj cov dej seb huv npaum li cas. Yog tias koj xav tau kev pab txhais cov lus qhia no, thov hu rau peb ntawm (888) 237-1333.

這是關於您的水質的十分重要的資訊。如果您需要幫助翻譯此資訊 請致電(888) 237-1333 與我們聯繫。

आपके पानी की गुणवत्ता के बारे में यह बहुत महत्वपूर्ण सूचना है। यदि इस सूचना के अनुवाद के लिए आपको सहायता की जरूरत हो, तो कृपया (888) 237-1333 पर हमें काल करें।

Это очень важная информация о качестве Вашей воды. Если Вам требуется перевод этой информации, позвоните нам по телефону (888) 237-1333.

Ito ay isang napakahalagang impormasyon tungkol sa kalidad ng iyong tubig. Kung iyong kailangan ng tulong sa pagsalin ng impormasyon na ito, mangyaring tumawag sa amin sa $(888)\ 237-1333$.

Đây là thông tin rất quan trọng về chất lượng nước của quý vị. Nếu quý vị cần thông dịch thông tin này, xin gọi chúng tôi theo số (888) 237-1333.

DunniganPWS ID: CA570071

QUALITY. ONE MORE WAY WE KEEP LIFE FLOWING.

WE KEEP LIFE FLOWING™

A message from **California American Water's President**

Rich Svindland
President
California American Water

June Chulm

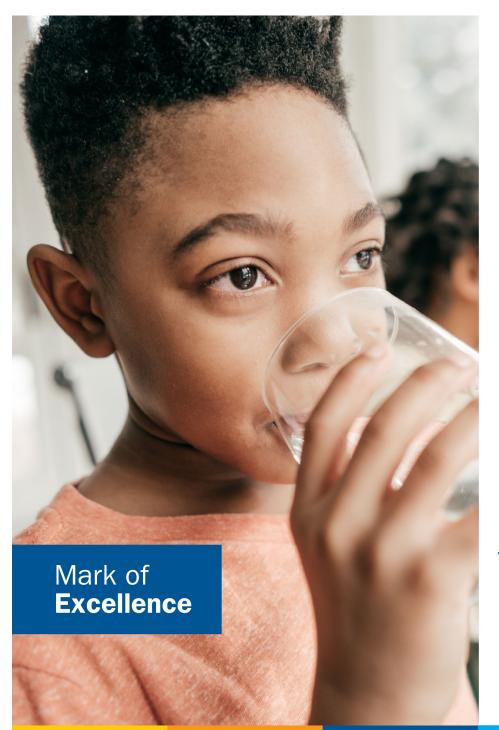
Rich Svindland
California American Water

www.californiaamwater.com

This report contains important information about your drinking water. Translate it or speak with someone who understands it at (888) 237-1333, Monday-Friday, 7 a.m. to 7 p.m.

ATTENTION: Landlords and Apartment Owners

Please share a copy of this notice with your tenants. It includes important information about their drinking water quality.



Once again, we proudly present our Annual Water Quality Report, also referred to as a Consumer Confidence Report (CCR). CCRs let consumers know what contaminants, if any, were detected in their drinking water as well as related potential health effects. CCRs also include details about where your water comes from and how it is treated. Additionally, they educate customers on what it takes to deliver safe drinking water and highlight the need to protect drinking water sources.

California American Water is committed to delivering high quality drinking water service. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, environmental compliance, sustainability and community education while continuing to serve the needs of all our water users.

TABLE OF CONTENTS

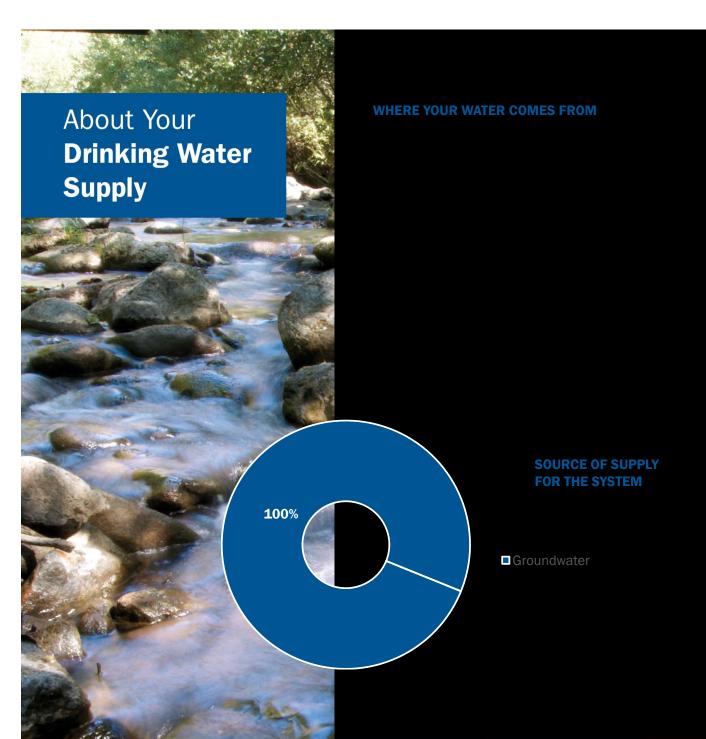
A message from our President	
What is a Consumer Confidence Report	3
Mark of Excellence	
About Your Drinking Water Supply	
What are the Sources of Contaminants?	
Protecting Your Drinking Water Supply	
About Lead	
Important Information About Your Water • PFOA/PFAS	
Water Quality Results	1
Definitions of Terms Used in Document	1
Water Quality Results: Detailed Charts	12-1
About Us	1
Contact Us	1

EVERY STEP OF THE WAY.

We monitor and test your water at multiple points throughout our process of drawing it from its source, treating it to meet drinking water standards, and distributing it through our pipeline systems. In fact, American Water performs over one million tests annually for about 100 regulated contaminants, nationwide.

EXPERTISE. RECOGNIZED AT THE HIGHEST LEVEL.

American Water is an expert in water quality testing, compliance and treatment and has established industry-leading water testing facilities. Our dedicated team of scientists and researchers are committed to finding solutions for water quality challenges and implementing new technologies. We are recognized as an industry leader in water quality and work cooperatively with the EPA so that drinking water standards and new regulations produce benefits for customers and public water suppliers. American Water has earned awards from the EPA's Partnership for Safe Water as well as awards for superior water quality from state regulators, industry organizations, individual communities, and government and environmental agencies.


WATER QUALITY. DOWN TO A SCIENCE.

We also have access to American Water's Central Laboratory in Belleville, Illinois, which conducts sophisticated drinking water testing and analysis. Here, American Water scientists refine testing procedures, innovate new methods, and look for ways to detect potentially new contaminants—even before regulations are in place.

MAINTAINING QUALITY FOR FUTURE GENERATIONS.

Just as California American Water are investing in research and testing, we also understand the importance of investing in the infrastructure that provides high-quality water service to you. Last year alone, we invested more than \$68 million to improve our water and wastewater treatment and pipeline systems.

QUICK FACTS ABOUT THE Dunnigan SYSTEM

Water source:
Groundwater wells

Disinfection and other treatment:
California American Water uses
drinking water treatment
technologies to remove naturally
occurring hexavalent chromium
and chlorination for disinfection to
maintain water quality in the
Dunnigan water system distribution
system.

SPECIAL HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What are the **Sources of Contaminants**?

To provide tap water that is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be

obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, aquifers and/or groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial Contaminants	such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
Inorganic Contaminants	such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
Pesticides and Herbicides	which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
Organic Chemical Contaminants	including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also, come from gas stations, urban storm water runoff, and septic systems.
Radioactive Contaminants	which can be naturally occurring or may be the result of oil and gas production and mining activities.

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

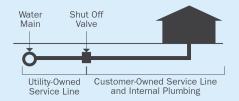
Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Properly dispose of pharmaceuticals, household chemicals, oils and paints.
 Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag. Check with the local refuse facility for proper disposal.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Take part in watershed activities.

FOR MORE INFORMATION

To learn more about your water supply and local activities, visit us online at californiaamwater.com or contact the regional Source Water Protection Lead, Victoria Kunda at 916-564-4278.

Community Involvement: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities.


Environmental Grant Program: Each year, we fund projects that improve water resources in our local communities.

Pharmaceutical Collection: We sponsor drop box locations within the state for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies.

About **Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/ safewater/lead.

UTILITY-OWNED VS. CUSTOMER-OWNED PORTION OF THE SERVICE LINE

Please note: This diagram is a generic representation. Variations may apply.

The most common source of lead in tap water is from the customer's plumbing and their service line.

Our water mains are not made of lead; however, the water service line that carries the water from the water main in the street to your home could be. Homeowners' service lines may be made of lead, copper, galvanized steel or plastic. You can assess your service line material where it enters your home, typically in your basement, crawl space or garage, near the inlet valve.

MINIMIZING YOUR POTENTIAL EXPOSURE

You cannot see, smell or taste lead, and boiling water will not remove lead. Here are steps you can take to reduce your potential exposure if lead exists in your home plumbing.

CHECK YOUR PLUMBING AND SERVICE LINE

If you live in an older home, consider having a licensed plumber check your plumbing for lead. If your service line is made of lead, and you're planning to replace it, be sure to contact us at 1-888-237-1333

1. Flush your taps. The longer the water lies dormant in your home's plumbing, the more lead it might contain. If the water in your faucet has gone unused for more than six hours, flush the tap with cold water for 30 seconds to two minutes before drinking or using it to cook. To conserve water, catch the running water and use it to water your plants.

Use cold water for drinking and cooking. Hot water has the potential to contain more lead than cold water. If hot water is needed for cooking, heat cold water on the stove or in the microwave.

3. Routinely remove and clean all faucet aerators.

Look for the "Lead Free" label when replacing or installing plumbing fixtures.

5. Follow manufacturer's instructions for replacing water filters in household appliances, such as refrigerators and ice makers, as well as home water treatment units and pitchers. Look for NSF 53 certified filters.

6. Flush after plumbing changes. Changes to your service line, meter, or interior plumbing may result in sediment, possibly containing lead, in your water supply. Remove the strainers from each faucet and run the water for 3 to 5 minutes.

8

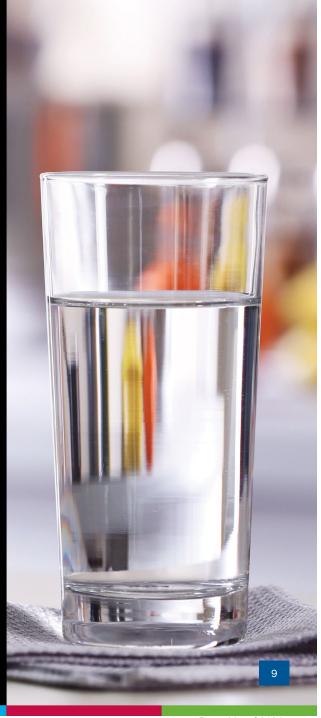
Important Information About **Drinking Water**

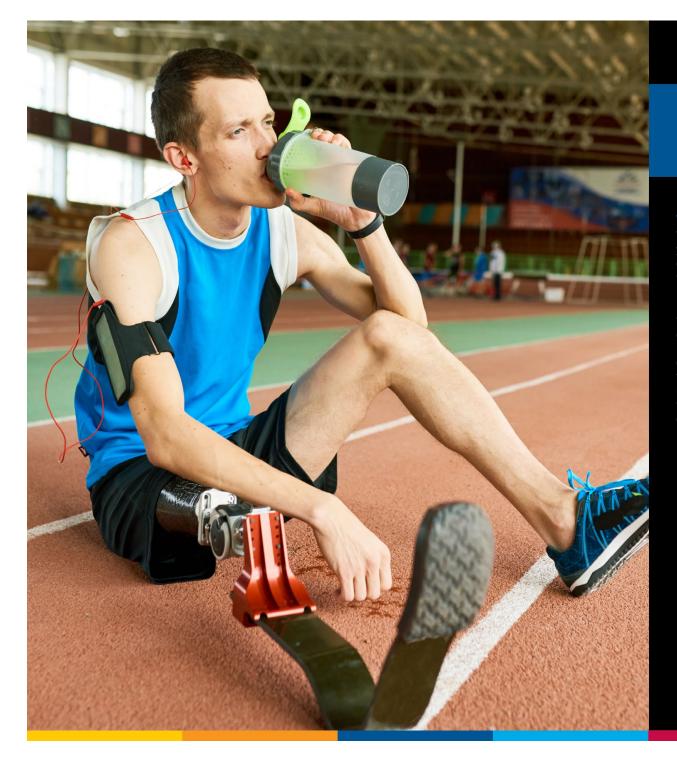
PFOA/PFOS Monitoring

PFAS refers to per- and polyfluoroalkyl substances, a class of man-made chemicals, manufactured for industria applications and commercial household products such as non-stick cookware, waterproof and stain resistant fabrics and carpets, firefighting foam and cleaning products. The properties that make these chemicals useful in so many of our every-day products also resist breaking down and therefore persist in the environment. Exposure may be from food, food packaging, consumer products, house dust, indoor and outdoor air, drinking water and at workplaces where PFAS are made or used.

In accordance with Orders received from the Division of Drinking Water (DDW) California American Water is sampling designated sources for PFAS constituents. In 2019 DDW established Notification Levels (NLs) at 6.5 ppt for the PFAS constituents perfluorooctanesulfonic acid (PFOS) and 5.1 ppt for perfluorooctanoic acid (PFOA in drinking water). In 2020 DDW established Consumer Confidence Detection Levels (CCRDL) of 4 ppt for both PFOS and PFOA.

The science and regulation of PFAS and other contaminants is always evolving, and California American Water strives to be a leader in research and development. PFAS contamination is one of the most rapidly changing areas in the drinking water field. We have invested in our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critically important to addressing this issue.


This is one of the most rapidly changing landscapes in drinking water contamination. We have invested time and effort on our own independent research, as well as engaging with other experts in the field to understand PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFAS from drinking water, because we believe that investment in research is critical for addressing this issue.


Lauren Weinrich

Principal Scientist,

Water Research and Development

77

Water Quality **Results**

WATER QUALITY STATEMENT

We are pleased to report that during calendar year 2020, the results of testing of your drinking water complied with all state and ederal drinking water requirements.

For your information, we have compiled a list in the table below showing the testing of your drinking water during 2020. The Division of Drinking Water allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, are more than one year old.

Definition of Terms

These are terms that may appear in your report.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

DDW: Division of Drinking Water

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA: Locational Running Annual Average

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is

convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: Million fibers per liter.

micromhos per centimeter (μmhos/cm): A measure of electrical conductance.

NA: Not applicable

N/A: No data available

ND: Not detected

Nephelometric Turbidity Units (NTU):

Measurement of the clarity, or turbidity, of the water.

Notification Level (NL): The concentration of a contaminant, which, if exceeded, requires notification to DDW and the consumer. Not an enforceable standard.

pH: A measurement of acidity, 7.0 being neutral.

picocuries per liter (pCi/L):

Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

parts per billion (ppb): One part substance per billion parts water, or micrograms per liter.

parts per million (ppm): One part substance per million parts water, or milligrams per liter.

parts per trillion (ppt): One part substance per trillion parts water, or nanograms per liter.

Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water

treatment requirements.

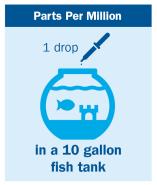
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California

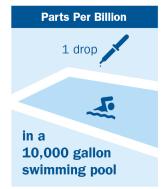
RAA: Running Annual Average

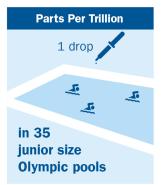
Secondary Maximum Contaminant Level

(SMCL): Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

SWRCB: State Water Resources Control Board


TON: Threshold Odor Number


Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in water.


Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or utilize a treatment technique under certain conditions.

MEASUREMENTS

Water Quality Results

NOTE: Regulated contaminants not listed in the tables below were not found in the treated water supply.

DISINFECTANTS - Collected in the Distribution System									
Substance (with units)	Year Sampled	Compliance Achieved	MRDLG	MRDL	Average Amount Detected	Range Low-high	Typical Source		
Distribution System Chlorine Residual (ppm)	2020	Yes	4	4	0.87	0.7 to 1.0	Water additive used to control microbes.		

	PRIMARY REGULATED SUBSTANCES											
Substance (with units)	Year Sampled	Compliance Achieved	MCL	PHG (MCLG)	Average Amount Detected	Range Low-high	Typical Source					
Arsenic (ppb)	2020	Yes	10	0.004	2.4	NA	Erosion of natural deposits; runoff from orchards; Glass, and electronics production wastes					
Barium (ppm)	2019	Yes	1	2	0.2	NA	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.					
Nitrate (as nitrogen) (ppm)	2020	Yes	10	10	2.8	1.3 to 3.6	Runoff and leaching from fertilizer use; Leaching from septic tanks and sewage; Erosion of natural deposits					
Fluoride (naturally occurring) (ppm) ¹	2020	Yes	2.0	1	0.3	ND to 0.66	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories					

http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml

	SECONDARY REGULATED SUBSTANCES									
Substance (with units)	Year Sampled	Compliance Achieved	SMCL ² (NL)	Average Amount Detected	Range Low-high	Typical Source				
Chloride (ppm)	2018, 2020	Yes	500	63	55 to 67	Erosion or leaching of natural deposits				
Sulfate (ppm)	2018, 2020	Yes	500	2.4	2.3 to 2.6	Runoff/leaching from natural deposits; Industrial wastes				
Specific Conductance (umhos/cm)	2018, 2020	Yes	1600	667	640 to 680	Substances that form ions when in water; Seawater influence				
Total Dissolved Solids (ppm)	2018, 2020	Yes	1000	367	350 to 380	Runoff/leaching from natural deposits				
Turbidity (NTU)	2018, 2020	Yes	5	0.36	0.16 to 0.68	Soil runoff				

^{2 -} Substances with Secondary MCLs do not have MCLGs; these limits are primarily established to address aesthetic concern

		OTHER SUBSTANCES O	FINTEREST		
Substance (with units)	Year Sampled	Average Amount Detected	Range Low-high	Comments	
Total Alkalinity as CaCO3 (ppm)	2020	267	260 to 270		
Calcium (ppm)	2020	40	38 to 41		
Magnesium (ppm)	2020	44	NA		
рН	2020	7.4	6.9 to 7.8		
Sodium (ppm)	2020	30	NA	"Sodium" refers to the salt present in the water and is generally naturally occurring.	
Total Hardness as CaCO3 (ppm)	2020	293	280 to 300	"Hardness" is the sum of polyvalent cations present in	
Total Hardness as CaCO3 (grains/gallon)	2020	17.2	16.4 to 17.5	the water, generally magnesium and calcium. The cations are usually naturally occurring	
Aggressive Index	2020	12	NA		

UNREGULATED CONTAMINANT MONITORING

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is necessary. Every five years, the EPA issues a new list of no more than 30 unregulated contaminants to be monitored.

	ADDITIONAL WATER QUALITY PARAMETERS OF INTEREST										
Parameter (with units)	Year Sampled	PHG (NL)	Average Result	Range Detected	Typical Source/Notes						
Vanadium (ppb)	2018	(50)	11	NA	Naturally occurring metal. Vanadium exposures resulted in developmental and reproductive effects in rats.						
Boron (ppm)	2019	(1)	0.14	NA	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.						
Bromide	2020	N/A	0.13	NA							